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CHAPTER 1. INTRODUCTION 

1.1 Power System Oscillations 

Power system oscillations are not a new phenomenon. The earliest recorded inci

dents in the 1930's were ascribed to governor dead band on hydro-generators. In the 

mid-1960's, "negative" damping was found during attempts to interconnect the Detroit 

Edison/Ontario Hydro/Hydro Quebec networks. The reason turned out to be the au

tomatic voltage regulators (AVRs) of turbo-generators. Low frequency oscillations are 

quite a common problem in most interconnected power systems today. These oscillations 

are due to the dynamic interactions between the various generators associated with the 

presence of high gain AVRs and weak connections between distinct areas of a system 

because of long transmission lines. Unstable or poorly damped oscillations have been 

observed in power systems around the world (1). 

Oscillations are a characteristic of power systems. They are initiated by any small 

disturbance in the system. Fundamentally, it's an exchange of momentum between the 

rotating components of the system - mainly the synchronous generators. Power system 

electromechanical oscillations are usually in the range between 0.1 and 2 Hz depending 

on the number of generators involved. Local oscillations lie in the upper part of that 

range and consist of the oscillation of a single generator or a group of generators against 

the rest of the system. In contrast, inter-area oscillations are in the lower part of the 

frequency range and comprise the oscillations among groups of generators in different 

geographical areas of the system. Compared with oscillations found in other dynamic 
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systems, power system oscillations exhibit low damping. 

Local oscillations often occur when a fast exciter is used on the generator, and to 

stabilize these oscillations, power system stabilizers (PSS) were developed. Inter-area 

oscillations may appear as the system's load is increased across the weak transmission 

links in the system which characterize these oscillations (2). If not controlled, these os

cillations may lead to total or partial power interruption (3). To ensure safe operation, 

limits have to be placed on the maximum transfer power over these strategic lines. How

ever, in the present commercial climate of the electric power industry, restricting power 

transfers is not a preferred option. So the provision of adequate levels of damping for 

the various oscillations has been of growing concern. There is now a wide choice of de

vices available to provide additional system damping including: power system stabilizer 

(PSS), AVR and excitation systems of generators, governors and damping controllers 

installed on flexible AC transmission system (FACTS) devices, and synchronous con

densers. Among them, PSSs remain the method of choice. Also there is an increasing 

interest in using FACTS devices such as Static var compensators (SVC) and thyristor 

controlled series capacitors (TCSC) to aid the damping of these oscillations. 

1.2 Challenges in Damping Control in Power Systems 

1. robustness 

Power system operating conditions vary with system configuration and load level in 

a complex manner. The system typically operates over a wide range of conditions. 

A variety of controllers are employed to ensure the system operates in a stable 

manner within its operating range. 

In the past, many efforts have been made to investigate the application of robust 

control techniques to power systems, such as Kharitonov's theorem(4), ^^(5; 6; 7; 

8; 9), £oo(10; 11), and Structured Singular Value(SSV or /i) techniques(13). These 
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methods mainly use one Linear Time Invariant (LTI) controller to guarantee the 

robust stability and robust performance after describing the changes of operating 

condition as uncertainties. 

With the increase of competition and deregulation, systems are being operated 

closer than ever to their limits, which makes it hard to design a LTI controller 

that performs well at all operating conditions because of the inherent system non-

linearity. The data in (16; 18) shows that power systems have zeros migrating to 

right half plane (RHP) when system operating conditions change. This kind of 

non minimum phase (NMP) behavior also poses a challenge to the performance 

and robustness of the system controllers. A fixed structure controller shows more 

and more limitations. 

2. decentralized design and coordination 

For large power systems, a single local controller is no longer sufficient to stabilize 

the whole system and to obtain a satisfactory damping property. Centralized 

design is neither economical nor reliable due to the inherent constraints of large 

power systems such as geographic dispersion, topology variance, and nonlinearities. 

Decentralized design becomes a natural consideration. A coordinated action from 

the various controllers in the system is also needed. The control design method 

must minimize or prevent deleterious interactions among controllers, ensure the 

dynamic and steady state performance criteria for the system are satisfied, and 

provide a simple procedure for tuning the controllers. 

1.3 Power System Stabilizer (PSS) 

The PSS is often used to provide positive damping for power system oscillations. 

They are mostly single-loop local controllers, which use speed, power input signal, or 
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frequency and synthesize a control signal based on appropriate phase-lead compensations 

to add to the reference voltage signal of the voltage regulator. It is developed to extend 

stability limits by modulating the generator excitation to provide additional damping to 

the oscillations of synchronous machine rotors (53). Many methods have been used in 

the design of PSS, such as root locus and sensitivity analysis (53; 43), pole placement, 

adaptive control, etc. 

The conventional PSS design produces a component of electrical torque in phase with 

the rotor speed deviations. It is based on a particular operating point. This could lead 

to non-optimal damping in the entire operating range. When used in a multi-machine 

system, it even decreases the damping in some cases. The procedure to tune the PSS is 

also very time consuming. 

In recent years, considerable efforts have been placed on the coordinated synthesis 

of PSSs in large power systems. To achieve both a coordinated action and a better ro

bustness with PSSs, an empirical tuning procedure (which aims to maximize the phase 

margin in the frequency range where the oscillations are expected to occur) is employed. 

Naturally, due to its empirical nature, the efficiency of this procedure is limited and 

depends strongly on the designer's experience and knowledge of the system. The robust 

control approaches were motivated by a prospect of overcoming the cited drawbacks 

of tuning. However, the typically high dimensions of the power system models consti

tute another factor that discourages the application of computationally intensive design 

techniques and leads to very high order controllers. 

1.4 Discussion on Classical Gain Scheduling Control 

It is well known that linear analysis techniques have been successfully applied in 

power systems. Normally each linear model is based on a fixed operating point. When 

the operating point varies, the original linear model is not applicable anymore because 
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of the nonlinearity of the system. The wide variations in the characteristics of the power 

system dynamics throughout the operating envelope make gain scheduling a particularly 

suitable design strategy to improve the robustness of the system. The classical gain 

scheduling control scheme is given in Fig. 1.1 

Controller Plant 

Scheduling 

P(-,P) 

Figure 1.1 Classical gain scheduling control scheme 

A typical procedure for classical gain scheduling design consists of the following steps: 

1. Select several operating points which cover the range of the plant's dynamics and 

obtain a linear time-invariant (LTI) approximation to the plant at each operating 

point; 

2. For each linearized plant, design a LTI controller to meet the performance require

ments; 

3. Then using a scheduling scheme, interpolate or schedule the local linear designs to 

yield an overall nonlinear controller that covers the entire operating range. 

The concept of gain scheduling also has been introduced to power systems(34; 35; 36; 

37; 39; 40; 41). The classical design procedure was followed. (34) applied this strategy 

for Power System Stabilizer (PSS) design for a single machine infinite bus (SMIB) sys

tem. The feedback gains are pre-calculated for various real and reactive power output 

conditions. (35) modelled the generation unit in a multi-machine environment as a single 
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machine connected to an infinite bus through a transmission line, the transmission line 

impedance is then used as a scheduling variable. This gain scheduling idea has several 

practical applications and promising improvement on a wide range of performance. But 

two disadvantages restrict it. One is the lack of a suitable theoretical guidance as men

tioned before, hence, designers decide the scheduling law according to their practical 

experience and simulation. The other is the complicated control algorithm and require

ment of on line model identification. Many new techniques like adaptive control(40), 

fuzzy logic, artificial neural networks(36; 41) are employed in this field. They do get bet

ter results but also pay the extra cost of system identification and/or network training. 

(39) approximated the single machine infinite bus system as a linear parameter depen

dent system against both the shunt loads and reference voltage changes. The controller 

design was applied based on this assumption. However, this assumption will not apply 

for large variations of operating conditions or large systems. 

Although this approach works well in practice, it can not provide stability and per

formance guarantees except for slowly varying parameters(19; 20) and heuristic rules 

are followed. The stability of the gain-scheduled system is examined through extensive 

non-linear simulations. Furthermore, since these operating points are usually indexed 

by some combination of state or reference state trajectories, the procedure requires a 

complex parameter identification block to perform the scheduling and has to deal with 

delicate stability questions in the switching zone. 

1.5 A Natural Extension - LPV Method 

LFV theory has been developed in the past ten years. It is a natural extension of the 

conventional gain scheduling approach. The implication that linear parameter varying 

(LPV) system theory has for gain scheduling is obvious, since gain scheduling concep

tually involves a linear, parameter-dependent plant. With real measurable scheduling 
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variable(s), it can achieve a larger system operating range while guaranteeing the stabil

ity and performance not only for slowly changing parameters but also for arbitrarily fast 

changing parameters. Compared with classical gain scheduling design, not only does it 

eliminate the strict limitations on the changing rates of scheduling variables, but also 

has theoretical guarantees for stability and performance instead of rules of thumb. In 

addition, LPV control theory has been proven useful in simplifying the interpolation and 

realization problems associated with conventional gain-scheduling. Specifically, it allows 

us to treat a series of scheduled controllers as a single entity, with the gain scheduling 

achieved entirely by the parameter dependent controller. 

Instead of using a fixed LTI controller, a parameter dependent controller based on 

a single quadratic Lyapunov function is proposed here to guarantee the LPV system 

is exponentially stable and achieve an induced L2 norm performance objective from 

disturbance to error signals. To reduce the conservatism, the known bounds on the 

parameters' rates of variation are also introduced in the LPV controller design based 

on a parameter-dependent Lyapunov function. The resulting controller is time varying 

and smoothly "scheduled" by the measurement of varying parameters. Due to its adap

tive nature, such a controller can achieve higher performance than classical robust LTI 

controllers. Moreover, they can be implemented at little or no extra cost. 

Since the LPV theory can guarantee system stability and performance for arbitrarily 

fast changing scheduling variables, it also has the potential to be applied to the decen

tralized controller design. Instead of considering the interconnected system model, we 

just consider each individual machine and represent its interconnection with the rest of 

the system by arbitrarily fast changing real and reactive power output in some range. 

All possible dynamics at the interface between the generator and the rest of the system 

are supposed to be represented by this approach. As a result, the system is decoupled 

naturally and the order of the plant is decreased dramatically. In addition robustness is 

considered through the time changing controller whose parameters are dependent on the 
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scheduling variables, which represent the changes in the system operating conditions. 

The resulting controllers give satisfactory performance over a wide range of operating 

conditions. 

1.6 Objectives and Scope of Research Work 

The main objective of this research project is to apply the LPV techniques to the 

PSS design. The adaptive nature of a LPV controller is used to improve power system 

damping in a large operating range. Robustness and performance guarantees are given 

by the LPV theory. The research conducted develops a procedure for a single PSS design 

including design setup, selection of weighting functions, realization of the LPV PSS, etc. 

Inspired by the characteristic of a LPV controller, that it guarantees system stability and 

performance for arbitrarily fast changing scheduling parameters on a predefined range, 

further work is done on the application of LPV methods to decentralized PSS design. 

A systematic procedure for decentralized design is also developed. It accounts for the 

coordination automatically. 

The scope of this research work includes the following: 

1. Formulate the power system model as a LPV system in order to apply the LPV 

approaches. Linearization is applied to the nonlinear differential and algebraic 

equations at every operating point that is decided by the scheduling variables. 

The scheduling variables can be many changing parameters that are measurable 

in real time such as load levels, tie line flows and so on. 

2. Develop a systematic procedure to design PSS using LPV synthesis approach. The 

feedback setup is constructed and guidelines for proper weighting function selection 

are given. 

3. Synthesize a PSS using Single Quadratic Lyapunov Function based LPV method 
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that considers arbitrarily fast changing parameters. Nonlinear simulations are 

performed to verify the good damping performance of the LPV PSS. Comparisons 

with the Hoo PSS and conventional PSS are made to show that the LPV PSS is 

more effective. 

4. The LPV approach based on a Parameter-dependent Quadratic Lyapunov Func

tion is employed on PSS synthesis to reduce the conservatism from the assumption 

of the arbitrarily fast changing scheduling parameters. By taking the bounds of 

parameter rates of change into consideration, the operating range can be extended 

even larger. 

5. Apply curve fitting technique to the realization of LPV controllers. The gridding 

process in the LPV synthesis leads to a discrete controller. Approximation of 

the parameter dependence with polynomial or rational functions makes the con

troller parameters change smoothly with the scheduling variables to guarantee the 

robustness of the system on a large range. 

6. Apply the LPV technique to the decentralized controller design process. Instead 

of considering the whole system model, we just consider one machine model with 

arbitrarily fast changing output real and reactive power in some range. All pos

sible dynamics on the interface between the generator and the rest of the system 

are supposed to be represented by it. By doing this, the system is decoupled nat

urally and the order of the design plant is decreased dramatically. The resulting 

controllers give a satisfactory performance on a large range. The design framework 

and procedure are given. Time domain simulations show that the performance of 

the LPV PSSs is superior to the conventionally designed PSSs. 
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1.7 Test Systems 

Two test systems are extensively used in this research. 

1. The four-machine IEEE generator test system (43) as shown in Figure 1.2. This 

system was specially designed by Ontario Hydro to study the fundamental nature 

of inter-area oscillations (43). 

AREA1 AREA2 

o-
2 5 6 4 

AR1G1 

o 
AR2G1 

OQcapl ' ' Qcap2 

LOADl LOAD2 vj 

AR1G2 AR2G2 

Figure 1.2 Four-machine two-area test system 

The Synchronous generators are represented by the two-axis model(42), with the 

excitation system represented by the IEEE AC-4 model(42). The network is rep

resented by quasi steady-state network parameters with constant impedance load 

model. By assuming the generator internal reactance to be constant, the network 

representation is reduced to generator internal buses. We assume local load to be 

distributed to local generators equally, therefore the system states are precisely 

based on the tie line flow, which describes the nonlinearity of the system and is 

the varying parameter. The objective is to design a power system stabilizer (PSS) 

to stabilize the whole system when it operates at different points. 
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2. The IEEE 50-generator (50) test system system. This is a moderate sized system 

which includes all of the modelling features and complexity of large scale power 

systems. A one-line diagram of the area of interest is shown in Fig. 1.3. 

110 

112 

-c 

0— 

- - 1 0  

Station A 

104 

Station B 

Figure 1.3 IEEE 50-generator system: a one-line diagram of the study area. 

This test system contains 44 generators represented by the classical model with 

uniform damping and 6 generators represented by a two-axis model. The operating 

point was characterized by setting the real power generation at Buses #93 and #110. 
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1.8 Thesis Outline 

Chapter 1 gives motivation and background for the research work and introduce the 

objective and scope of the research. A concise literature review of LPV methodology 

and a systematic LPV synthesis procedure are given in Chapter 2. Chapter 3 provides 

a detailed description of the mathematical models of the power system components and 

overall system dynamic equations and LPV formulation of the power system model. In 

chapter 4, a systematic procedure to design a LPV PSS is presented. Design setup and 

weighting function selection are illustrated. The gridding process and LPV controller 

realization are discussed. Two LPV approaches are investigated in this chapter. One 

is based on a Single Quadratic Lyapunov Function (SQLF), and the other is based on 

a Parameter Dependant Lyapunov Function (PDLF). Comparisons are made among 

conventional PSS, PSS, and LPV PSS through frequency domain analysis and non

linear time domain simulation. Chapter 5 proposes a decentralized PSS design scheme 

using SQLF based LPV approach. Detailed steps for the decentralized synthesis are 

established. A theoretical proof for closed-loop system stability is provided. Simulation 

results on the comparison of the controller performance with the conventional PSSs and 

LPV PSSs are given. Chapter 6 presents conclusions and provides suggestions for future 

work. 
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CHAPTER 2. LPV METHODOLOGY 

2.1 Literature Review 

Over the last ten years, extensive research has focused on developing analysis and 

synthesis techniques for gain-scheduled controllers for linear parameter varying(LPV) 

systems (21; 22; 23; 24; 25; 26). The notation of LPV systems was first introduced in (27). 

This class of systems is different from standard Linear Time Variant (LTV) systems due 

to the causal dependence of its controller gains on the variations of the plant dynamics. 

A number of interesting alternative approaches have been proposed in the context of gain 

scheduling design (for example, Becker et al.1993, Packard 1994, Apkarian and Adams 

1998). They are commonly referred to as LPV gain scheduling methods, which are 

conceptually quite distinct from the conventional gain scheduling approach since they 

involve the direct synthesis of a controller rather than its construction from a family of 

local linear controllers designed by LTI methods. Moreover, LPV methods typically use 

norm based performance measures. All the LPV approaches at present involve some 

degree of conservativeness. 

Using scaled small gain theorem, a systematic gain scheduling control design tech

nique has been developed in (24; 25). techniques are extended to the class of LPV 

systems whose state space matrices are linear fractional functions of the parameters. 

When the parameter dependency in both plant and controller is linear fractional, the 

existence of such a gain scheduled controller is fully characterized in terms of linear ma

trix inequalities (LMIs). Efficient optimization techniques are available for the controller 
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synthesis (21). It is also demonstrated that the original gain scheduling problem can 

be reformulated as one of robust performance with structured uncertainties. However, 

the conservativeness is introduced by assuming the varying parameters are complex and 

vary arbitrarily fast. 

Parallel to the first approach, the use of a single or parameter dependent Lyapunov 

function in analysis and control design for LPV plants has been studied in the ro

bust control framework (22; 23; 26; 28). The LPV system is allowed to have general 

parameter-dependence other than trivial continuity requirement. Sufficient conditions 

are given in (22) that guarantee an LPV system is exponentially stable and achieves an 

induced L2 norm performance objective from the disturbance to error signals. It gener

alizes the standard Hoo methodology and the synthesis process exploits the realness of 

the varying parameters. This approach is less conservative than the method based on 

the small gain theorem. A LPV gain scheduling controller was designed in these cases. 

A single quadratic Lyapunov function is employed here as an analysis base. Since a fixed 

quadratic Lyapunov function is used in the whole range of parameter variation, potential 

conservativeness by measuring performance against arbitrarily fast variations in varying 

parameters is also introduced. In (26) parameter dependent Lyapunov functions are 

introduced to further reduce the conservativeness. Known bounds on the rate of pa

rameter variation are incorporated into the synthesis procedure. In contrast to scaled 

small gain approach, the solution to the LPV control synthesis problem is formulated 

as a parameter dependent LMI optimization problem. 

A primary practical difficulty with the foregoing approaches is that the solvability 

conditions involve an infinite number of constraints and so the task of determining a 

controller which satisfies these conditions is numerically intractable. This arises because 

a constraint must be satisfied for every allowable parameter value since there is a con

tinuum of parameter values. An ad hoc gridding method is typically used to divide the 

parameter space and renders the semi-infinite optimization problem to be finite. 
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Since the LMI constraints grow rapidly as the parameter number increases, in general, 

no systematic method for avoiding such gridding exists. Simplifications are possible for 

some specific classes of plants. For affine LPV systems with parameter values belonging 

to a convex polytope, the quadratic LPV ^-performance problem can be reduced to a 

convex problem with a finite number of constraints by imposing the requirement that 

the allowable parameter set is a convex polytope which has a finite set of extreme 

points (29; 30). Gain scheduling design tools are given in (21), which are only applicable 

to time varying and/or nonlinear systems whose linearized dynamics are reasonably 

approximated by affine parameter-dependent models. 

LPV gain scheduling technique has been successfully applied in many engineering 

applications such as flight and process control (46; 31; 32; 33). In the flight control 

problem, the LPV approach based on a single quadratic Lyapunov function is gener

ally applied. Different variables such as altitude, attack angle, and Mach number, are 

taken as scheduling variables in different cases. The approach in (26) is employed in 

(33) to achieve improvement by introducing the variation rate bound of the scheduling 

variable and designing multiple LPV controllers over different operating ranges. These 

applications demonstrate the usefulness of LPV theory for real engineering problems. 

The promising results obtained and the actual implementation of this approach in safety 

critical systems like aircrafts and process control highlight the potential of this technique 

when applied to large power systems. 

2.2 Single Quadratic Lyapunov Function (SQLF) Based 

Method 

2.2.1 Definition of the LPV System 

First of all, we would like to introduce the definition of the LPV system. 
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Definition 2.2.1 Given a compact subset P C Rs, the parameter variation set Fp  de

notes the set of all  piecewise continuous mapping R(time) into P with a finite number 

of discontinuities in any interval.  

Definition 2.2.2 Assume that the following are given: a compact set P C R s ,  and 

continuous functions A : Rs —>• H£nxn, B : Rs —> RnXnd, C : Rs —> RneXn
; D : Rs —>• 

j j jnexn^ These represent an nth order linear parameter varying (LPV) system, whose 

dynamics evolves as : 

' A(p(f)) B(p(<)) 

The notation T,p:—{HP ,  : p G Fp} represents the LPV system defined above. We will 

sometimes use E(P, A, B, C, D) to illustrate the state space data clearly. 

X(f) 
< 

II 

e(() d(t) J 
Wherep G Fp (2.1) 

2.2.2 Quadratic Stability of LPV System 

Quadratic stability is a strong notion of robust stability in the sense that it holds 

for arbitrarily fast variation in the parameter trajectory p, and its definition involves a 

single quadratic Lyapunov function. 

Definition 2.2.3 Given a compact subset P C a function A : Rs —> R"xn, the 

function A is quadratically stable over P if there exists a matrix P G Sn x n ,  such that 

for all  p G P 

/F(p)f + PA(P) < 0 (2.2) 

For LPV system Ep, if A is quadratically stable over P, then Ep is a quadratically 

stable LPV system. 

Definition 2.2.4 Given a quadratic stable LPV system, for zero initial conditions %(0) = 

0, define induced L2  norm as : 

" e lb Gpp  ||ii2:= sup sup 
p€-Fp,||d||2^0 d£L2 || ^ ||2 

(2.3) 
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Therefore, the L2  norm level for a LPV system represents the largest ratio of distur

bance norm and error norm over the set of all causal linear operators described by the 

LPV system. 

Theorem 2.2.1 Given compact set P, the open loop system S(P, A, S, C, D) and scalar 

7 > 0 ,  if  there exists an X £ Rn X n ,  X = XT  > 0, such that for all  p Ç. P, 

(2.4) 

A%X + X/F(p) XB(p) T'Clf) 

#(/))?% -/ < 0 

7-1C(p) 1~ lD{p) -I 

then the function A is quadratically stable over P, and there exists f3 < 7 such that 

induced L2  norm | |GFp | |  <  (3. 

2.2.3 SQLF LPV Controller Synthesis 

Given a compact set P C Rs, consider the open-loop LPV system 

±(f) %(<)) 
> = < <%(()) ^nW)) 

3/W ^2l(p(f)) 

> < d(t) 

u(f) 

(2.5) 

Where p G Fp. 

We restrict the matrix function Di2 to be full column rank and D\2 to be full row 

rank. To simplify the derivation of the control synthesis result, the following restrictive 

assumption is made :  D\2  and D21 are constant matrices. Dn  — 0 ,D2 2  — 0, Dj2D i 2  — / ,  

F>2iL>21 = I, Df2Ci(p) = 0 and Bi{p)D2l — 0 for all p G P. The solution to the synthesis 

problem is conceptually the same when these assumptions are relaxed, however, the 

algebra is considerably more complicated. Under these assumptions, after suitable norm 

preserving transformations on d and e, and invertible transformations on u and y, the 
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LPV system can be written as: 

i(f) A(/,(f)) ^i(/)(*)) 0 z(() 

ei(<) 
> — < 

Ci(X*)) 0 0 0 
> < 

di(t) 

62(f) 0 0 0 I d2{t) 

. !/(*) , . ^(/,(<)) 0 I 0 

(2.6) 

Then the p dependent feedback controller can be written as: 

Ak{p(t)) Bk(p{t)) |  |  xk(t)  

Ck(p(t)) Dk(p(t)) I I y{t)  

z(f) 

u(f) 
(2.7) 

Let xj l p(t)  — [xT(t) ,xl(t)],  eT(t)  = [ef(<), e|(<)] and dT  = [dj{t),  d%(t)],  then the 

closed-loop system becomes 

iclpify 
< > — < 

e(t) 

Xclp(t) 

d(<) 
(2.8) 

Adp(/)(<)) 

Cdp(/)(^)) Ddp(p(f)) 

Definition 2.2.5 Given the LPV system, satisfying the assumption in (2.6),  and 7 > 0, 

the quadratic LPV 7-performance problem is solvable if there exist an m > 0, a finite-

dimensional m-state controller (2.7),  and an X G fl£(n+m)x(n+m) )  X = XT  > 0 such that 

for all  p G P 

' A5,(p)X + XA^p) XBcW T%(p) 

Bc„(prx 7-'D^(^) 

7 ~ lCc iv(p) 7~ lDc l p(p) -I 

Theorem 2.2.2 Given P, the open loop system (2.6) and scalar 7 > 0, the quadratic 

LPV 7-performance problem is solvable if and only if there exist matrices Xu G RnXn, 

Xn  = X^ > 0, and Vu G R"x n ,  Yn  = > 0, such that for all  p G P : 

< 0  (2.9) 

CiWFn 0 

7-^% 0 -/ 

< 0 (2.10) 
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AT(p)Xn + XnA(p) — Cj(p) C2(p)XnBip 7  1 C i (p) 

1 0  < 0  ( 2 . 1 1 )  

0 I 

T'A. ^11 

(2.12) 

then the function A is quadratically stable over P, and there exists (3 <  7  such that 

Let Z :— (X11 — 7  1Vîi) 1  ,  

Ak{p) A(p) +  7  2B1(p)Bi(p)TY1 1
1  — B2(p)B2(p)T  — Z[C2(p)TC2(p) + (3 2 / /(/?)],  

#&(,,) := Z^(/,)T, 

%) = -^(^^7% 

Dk(p) 0. 

2.3 Parameter Dependent Lyapunov Function (PDLF) Based 

Method 

2.3.1 Definition of Parameter Dependent LPV System 

The controller derived from the method in section 2.2.3 considers arbitrarily fast 

parameter change. In other words, it uses a single quadratic Lyapunov function (SQLF) 

for all cases, which leads to much conservatism. The conservatism can be reduced 

through a parameter dependent Lyapunov function (26) (PDLF) if the bounds on the 

parameter's rate of variation are known. 

GFp|| < 

Then the LPV controller should be: 
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Definition 2.3.1 Given a compact subset P C Rs, finite non-negative numbers {vi}i= 1  

with v := [v>i. . .  u s]T .  We define the parameter v-variation set as 

Fp {p 6 C^R, Rs) : p(t) E P, |^| < i  — 1,... , s} where C^R, Rs) stands for the 

class of piecewise continuously differentiable functions from R to Rs. 

The LPV systems studied in this section are slightly different because of their state 

space data dependence on parameters and their derivatives. The definition is as follows: 

Definition 2.3.2 Given a compact set P C Rs, and the continuous functions (A, B, C, D) 

R s  X I s  -) (Rn x n ,  Rn x n<<, R™c X™, Rn«x n i i).  An n-th order LPV system with bounded pa

rameter variation rates Ep is given by 

X(f) 
> < Wherep E Fp (2.13) 

d(<) 

where p E Fp,x(t) E R", d{t) E Rnd, and e(t) E Rn'. 

2.3.2 Parameter Dependant Stability 

Definition 2.3.3 Given a compact subset P C Rs, finite non-negative numbers 

and a function A : Rs x Rs —> Rnx", the function A is parametrically-dependent stable 

over P if there exists a continuously differentiable function P : Rs -> Sn x n ,  such that,  

P(p) > 0 and for all  p E P and |/3,-| < z/t-, i  — 1,2,... , s 
s fip 

A^(/,,/3)f W + f(p)A(/,,^) + g(Air) < 0 (2.14) 
i=i op

> 

If no bounds apply to parameter variation (z/,- -> oo for i  — 1,2,... , s), by restricting P 

to be a constant matrix, the notation for parameter-dependant stability goes to quadratic 

stability. 

Definition 2.3.4 Given a parametrically-dependent stable LPV system, for zero initial 

conditions X(0) = 0, define induced L2  norm as : 

|| GFf ||i,2:= sup sup )) 6  | j 2  (2.15) 
peF»,\\d\\2*odei2  It a ||2 
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2.3.3 LPV 7-Performance/i/-Variation Problem 

Definition 2.3.5 Given the open-loop LPV system Ep in above definition, and the per
formance level 7 > 0. The parameter-dependent 7-performance problem is solvable if 
there exist an integer m > 0, a funciton W G C1(RS ,  5(n+m)x("+m)^ a nd continuous 

matrix functions (AK, BK,CK, L>K) : Rs x 1* -> (lmxm,|rax"»)|n"xm)|'>«xii^ suc/t 

that W(p) > 0 and 

for all  p G P and |/?,- |  < i = 1, • • • , s. 

This is also a generalized sub-optimal Hoc optimal control problem. It conceptually 

expands the applicability of the control methodology. 

Theorem 2.3.1 Given a compact set P C Rs, non-negative numbers {i/{} s
{ = 1  ,  per

formance level 7 > 0, and the open loop LPV system in (2.6),  the LPV synthesis 
^-performance/u-variation problem is solvable if and only if there exist continuously 
differentiable matrix functions X : R s  —> <pn x n  and Y : R s  —» <pn x n ,  such that for all  
p G P, X(p),Y(p) > 0,and 

7-1CcZp(p,/?) 7 1 D c i p ( p ,  0 )  

- I  

- I  

+ ^(„)y(p) - EL. 3^) - Te, 
Cn(f)y(p) 

Br(A-) 

y(f)c^w Bi(p) 

-7In,! 0 ' < 0 
0 ~llnd . 

(2.17) 

- ELi -^(p)C2(p) 

CiM 

X(f)Bu(f) C^(p) 
-7Indl 0 ' < 0 

0 t ine . 

(2.18) 

(2.19) 

where 

Â{p) A{p) — B2(p)C\2(p),  Bi(p) — [Bn(p)B1 2(p)~], 

Define the following: 
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F{p) -[iBjip) + Ci2(p)],  

L(p)  •— (p)  +  B 1 2 (p) \ -

Ar(f) := AM + B,(p)FM and <%) := + ̂ (/,)]. 

Then the resulting LPV controller can be defined as: 

A*(p,p) := A(p) + + %)f%)]y-i(f) 

+B2(p)F(p) + - g-i(p)#(p,p) 

BK { P )  := -Q~1(p)X(p)Lp 

:= FH 

OK{P) := 0 

To solve LMIs in 2.17-2.19, an ad hoc approach is employed here. Let {/i}^ and 

{<7;}£Li be user defined sets of continuously differentiable functions from RstoR. 

:= ECi /, r(f) := Ejli g, 

are continuously differentiable on R, —> Lpn x n . So once the basis functions /; and <7; 

are chosen, the original synthesis LMIs are solvable by optimizing over the matrices X{, 

y E p"*". 

The rate-bound LPV controllers are a function of the scheduling variables as well as 

their derivatives. We can either simulate the LPV controller by feeding in the scheduling 

derivative or eliminate them from the controllers. Eliminating the derivative usually has 

no effect on the controller performance. 

2.4 PSS Design Procedure 

The resulting controller can achieve a larger system operating range while guaran

teeing the stability and performance not only for slow changing parameters but also 

for arbitrarily fast changing parameters. The LPV synthesis procedure consists of the 

following steps: 
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1. Choose scheduling variables, which are measurable in real time and can charac

terize system operating conditions, such as tie-line power flow, real and reactive 

power output of generators; 

2. Fix the range of the scheduling variables according to the actual operating range of 

the system and grid the scheduling variable ranges. Get the corresponding system 

model (Matrices A, B, C,and D) at each gridding point; 

3. Build the controller design setup according to system requirements and control 

objectives. At each gridding point, weighting functions are chosen; then form the 

LPV model for the generator. 

4. Solve the set of LMIs and get the A&, Bk, C&, and Dk at each operating point; 

5. Use a curve fitting technique to form the LPV controller, as detailed in Section 2.8. 

More details are discussed below. 

2.5 PSS Design Setup 

Mixed sensitivity setup is employed for the LPV PSS design. The weighted inter

connection of LPV design is shown in Fig. 2.1. The main objective of the PSS is to 

make the output Aw, the relative frequency as small as possible in the presence of the 

disturbance signal d — Al/re/. The controller design is done over a wide range of op

erating conditions. As a result, the AVre/ setting will change. Since the oscillations of 

concern typically occur in the frequency range of approximately 0.2Hz to 2Hz, Wperj is 

chosen as a high pass filter. The fictitious input noise is applied to avoid a singularity 

problem and to achieve the form of (2.6) for the open loop plant. Wnot-se could be chosen 

as any small constant. Wu can be chosen as a limitation on the controller output, which 

is impractical if it is too large. 
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A G) 

perf 

noise 

Figure 2.1 LPV PSS design setup 

2.6 Solving the Infinite Dimension LMIs 

The solution of the LPV "y-performance problem is governed by the set of LMIs being 

satisfied for all p £ P, so it is a convex problem. In practical design cases, in order to 

avoid solving the above infinite dimensional LMIs (2.10-2.12,2.17-2.19), an alternative 

approximate problem is set up by gridding the parameter space and solving the set 

of LMIs that hold on the subset of P formed by gridding points. If this approximate 

problem does not have a solution, neither does the original infinite dimension problem. 

Even if the solution is found, it does not guarantee that the solution satisfies the original 

constraints for all p Ç P. However, since the matrix functions are continuous with respect 

to /), after checking on a dense enough subset of P, we can expect that the LMIs hold 

for all p E P. The result shows that this assumption is feasible. 

2.7 Gridding Process 

Experience in flight control design and process control design has shown that if the 

gridding is fine enough, stability/performance with the implemented LPV controller is 
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generally not an issue. The number of grid points depends on the system operating 

range chosen and the nonlinearity of the system. The gridding is not necessarily even. 

The more nonlinear the system is, the denser the gridding should be. Too dense gridding 

could bring unnecessary computational burden, while too sparse gridding could lead to 

a poor design. 

In the approaches followed in the research, a set of grid points based on the tie line 

real power is formed. In all the cases we studied, it is found that a grid at every 100MVK 

interval provides accurate results. At each grid point the power flow solution is obtained. 

From the obtained solution the system model (matrices A, B, C, and D) is derived. 

2.8 Realization of the LPV Controller 

The parameter space gridding necessary to numerically solve for the LFV controller 

l e a d s  t o  a  d i s c r e t e  c o n t r o l l e r .  I n s t e a d  o f  g e t t i n g  a  f i x e d  d e p e n d e n c e  o f  A ( / > ) ,  B ( p ) ,  C ( p )  

and D(p) on /?, the matrices are only known at a discrete set of p values. Implementa

tion of the LPV controller requires storing the values of the controller at each grid point 

and interpolating between these points during close-loop operation. The relationship 

can be approximated by polynomial or rational functions through curve fitting. The 

approximation procedure essentially consists of setting up an over determined system of 

linear equations for the coefficients at various points on a grid of varying parameters. 

These equations are then solved using a least square minimization approach. Approx

imation of the parameter dependence with polynomial or rational functions makes the 

controller parameters change with the scheduling variables to guarantee the robustness 

of the system on a large range. 
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CHAPTER 3. POWER SYSTEM MODELS 

The power system is a highly nonlinear system. The dynamic behavior of the sys

tem is dominated by its components (generator, exciter, load, etc.), which are coupled 

implicitly with the network model. So the mathematical model of the power system can 

be represented by two sets of equations: one set of differential equations and one set of 

algebraic equations. 

X = F(A:,K) 

0 - G(X,y) (3.1) 

where X is the vector of state variables by the differential equation, and Y is the 

vector of network variables. 

3.1 Load Model 

All of the loads are represented by constant impedance in this research. The load 

nodes and the terminal voltage nodes of the generators are eliminated, so the resulting 

network contains only the internal generator nodes (numbered from 1 to n). The gen

erator reactance and the constant impedance loads are included in the bus admittance 

matrix Yius of the reduced network. 
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3.2 Generator Model 

The complete mathematical description of the synchronous machines is too compli

cated to be used directly for system analysis and synthesis. Different degrees of approx

imations are adopted to simplify the generator model. Two kinds of generator models 

are used in this dissertation, which are the two-axis model and the classical model (14). 

We assume that in a n generator system, the first m generators are represented by the 

two-axis model and equipped with exciters and the remaining n — m generators are 

represented using the classical model. 

3.2.1 Classical Model 

The classical model represents a generator without excitation(see Chapter 2 of (14)). 

It is the simplest model for generators and it assumes the following : 

1. Mechanical power input is constant. 

2. Damping or asynchronous power is negligible. 

3. Constant-voltage-behind-transient-reactance model for the synchronous machines 

4. The mechanical rotor angle of a machine coincides with the angle of the voltage 

behind the transient reactance. 

The dynamic equations for the classical model are given by-

is valid. 

Miùi = Pi — Pe i  (3.2) 

(3.3) = LOi — ujs i  — m + 1, m + 2,..., n 

where, 
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Pe i  = ^2 [EiEjBij sin(4- - 5j) + EiEjGij cos(& - <5j)] 
i=i.i^i 

and 

Ef. internal bus voltage of generator i  

Mi: inertia constant of generator i  

Pm i :  mechanical power input of generator i  

G a :  driving point conductance of node i  

Gij + jBij: the transfer admittance between node i  and node j  

in the reduced network 

LOf. rotor speed of generator i (with respect to the synchronous frame) 

UJS '• synchronous speed 

3.2.2 Two-axis Model 

Generators with excitation control are described by the two-axis model (see chapter 

4 of (14)) in this work. In the two-axis model the transient effects are accounted for and 

the following assumptions are required. 

1. In the stator voltage equations the variation of flux linkages of d-q axes are negli

gible compared to the speed voltage terms. 

2. u = u>s — 1 p.u. 

The resultant dynamic equations are given by 
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where, 

T doiÊqi  — E F D i  — E q i  + (xdi  -  x d i )Idi  (3.4) 

TqOiÈdi = —-Srfi - (xqi -  Xqi)Iqi (3.5) 

Mid>i = Pm i  — (IdiEd i  + IqxEqi) + (xg i  — xd i)lq i ldi — D,(w, — Wg) (3.6) 

Si = uii — us i = 1,2,..., m (3.7) 

E' d ,E' q :  direct and quadrature axes stator EMFs corresponding to rotor 

transient fiux components, respectively 

Id, lq- the d and q axes stator currents 

TdoiTqo :  open-circuit direct and quadrature axes transient time constants 

X d ,  x d :  direct axis synchronous and transient reactances 

x q ,  x ' q :  quadrature axis synchronous and transient reactances 

Epo'- stator EMF corresponding to the field voltage 

Di : damping coefficient of generator i  

3.2.3 Angle Reference 

In (3.3) and (3.7) above, the absolute rotor angles (J,, i  = 1,2,... , n) are used as 

state variables. In order to make state variables independent, we introduce the relative 

rotor angles as new state variables. Without loss of generality, is chosen as reference, 

then the relative rotor angles are defined as: 

SH — Si  S \ , 2 — 2,3,... , 77-

The dynamic equations (3.2) — (3.7) remain unchanged with each Si replaced by Su 

and u>s replaced by w%. Therefore (3.3) and (3.7) becomes 

Su — uji uj\ % — 2,3,... , 77. (3.8) 
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3.3 Excitation System Model 

The block diagram of the exciter model, which is IEEE AC-4 (15), is shown in 

Figure 3.1. The state variables are EFD, XEI, and XE2, and the dynamic equations 

Vref 

TO 

PSS 

PSS 

1+sT 1+sT 

1+sT 

Figure 3.1 Excitation system model: IEEE AC-4. 

are given by 

ÊpDi = 77T^XE2i — 7f~EFDi + A% (VREFÎ ~ XE l i)  (3.9) 
-t Ai 1 Ai -t Ai 

XEU — —tj^XEU + Tf—Vn (3.10) 
J- Ri 7 Ri 

XE2i — —7f—^E2i+~7p (VREFi ~ Xeu) (3.11) 
i  Bi J Bi 

where, 

VREF' exciter reference voltage 

a = Ta/Tsi, Tsi and Ta are time constants 

VT- generator terminal voltage 

— Vrq  + j Vjd 

= {Eq  + xdId) + j(Ed  - xqIq) i  = 1,2,..., m (3.12) 
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A power system stabilizer (PSS) is used to add damping for the system through the 

modulation signal to a generator's voltage reference input. 

3.4 Network Modelling 

The reduced network contains only the generator internal buses. The bus admittance 

matrix Ybus consists of YijZjij = Gij + jB{j. 

Since generators are reduced to their internal buses, the associated currents and 

voltages are usually in the d—q axis reference frame, as shown in (3.2) — (3.6). Following 

the procedure in Chapter 9 of (14), the generator currents are given in the following form: 

Iqi = y^lFG+B{5ij)Eqj - FB-G(Sij)Edj] + EG+B(ôik)Ek (3.13) 
j=1 k=m +1 

Idi = Y2[Es-G{Sij)Eq j  + FG+B(ôij)Ed j] + ^2 FB -G(5ik)Ek (3.14) 

where 

j— 1 k=m-\-l  

% —  1^2 ,  . . .  y  71  

FG+B(^ij) = Gij cos(Sij) + B { j  sin(5ij) (3.15) 

FB^G(Sij) = B{j cos(Sij) — Gij s'm(5ij) (3.16) 

<>ij = ^ — 5j (3.17) 

3.5 Overall System Equation 

From the above discussions, the dynamic equations governing the generators and 

exciters could be cast in the following form: 

X = /(X,y,u) (3.18) 
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where, 

XT  = [XgM ,  Xj;S],  the vector of state variables 

XsM — [Eqi, Edl 1 1 "•) Fqrni ^dm. '  1 ; ^(m+l)l) •••)  ̂ nj <^nl] 

XES [-^FDL I ^ELLI XE2\J • "J ^-ELM•> ̂ E2M\ 

Y [-/7I, /(i l  ; • ••  > Iqmi I dm i Im+l ? • "lui 1 ? •••  ̂ Xn] î 

the vector of non-state (network) variables 

m — [Vrefi, • • • , the vector of control inputs 

and f is the vector of nonlinear functions summarized below: 

/i, = ^ 

— ; \EpOi (%di Xdi)^di\ % = 1) ...,TTl (3.19) 
TdOi 

hi = È'di 

— —, \—Ed i  — (xqi — xgi)/9i] i = l,...,m (3.20) 
TqOi 

jsi — î — 1, ..., 777 

— ~jy[\̂ mi ~ (ldiEdi + lqiEqi) + (ay - xd i)Iq iId i  — D,(wi - wg)] (3.21) 

fsi — ^i ^ — 772 -{- 1, ..., 77. 

= "^[(^rni — E { lq i  — Di(uJi — u?s)] (3.22) 

y4; — <^»1 

— tu,- — lvi i  — (3.23) 

hi = SpDi 

— T^XEH — ~ EpDi + (VnEFi -  XE \ i)  i  — 1,m (3.24) 
1 Ai J Ai -t Ai 

fsi  — XF] i 

= —7^—A'eii + ™—Wi i = m (3.25) 
-t m J m 
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Î 7  i  —  X - E l i  

1 1 — a 
= —7^—XE2i + ~7f,— (yreFi — XEu) i  = 1, ...,m (3.26) 

^  B i  B i  

We also have the network algebraic equation 

(3-27) 

From (3.13) and (3.14), we have 

= ^[fG+B(^)A'\-fB_G(4)4]+ Z ^+B(^)Ft (3.28) 
j —  1 k = m -(-1 
m n 

/</.• = Y^[FB-G(àij)Eqj +FG+B(ôij)Edj]+ ^2 FB-G(Sik)Ek (3.29) 
j = l  k = m + 1  

i = 1, 2,..., n 

For the exciter input voltage VT '-

Vt —  (Eg + x'dIdf + (£j — x'qIg)2  = 0 (3.30) 

3.6 Linearization Model 

Linearization of (3.18) leads to 

^ = <3-31> 

Similarly, Linearization of (3.27) results in 

ï ïxA X  +  WA Y  =  0  ( 3-3 2 )  

Ay = ^Wr'Ê(AX (3-M) 

Substituting 3.33 into 3.31, the representation of the whole system in the state space 

form can be obtained as following: 

AX = AAX + #Aw (3.34) 
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Where 

A -  W x ~ W { W Y l W  (3'35) 

B = I (3.36) 

3.7 LPV Model 

The above linearization process is applied to every operating point ( p ) .  For each 

given operating condition, specified in terms of real and reactive power load, real power 

generation schedules at generator buses, and voltage magnitude at certain buses, a power 

flow solution is obtained. This solution provides the voltage magnitude and angles at 

all of the buses. With the voltage solution and the power injection at each generator 

bus, initial conditions for the state variables are calculated. The state equations and the 

network equations are then linearized, and a set of state-space equations whose entries 

depend on the operating conditions (p) are obtained in the following form: 

AX = A(p)AX + B(p)u (3.37) 

Where AX is the vector of incremental state variables, u is the vector of incremen

tal control variables, and A(p), and B(p) are varying coefficient matrices with proper 

dimensions, p is time varying vector. It is bounded and its trajectory is unknown in 

advance, but we can measure it in real time. At each specific p, A and B are constant. 

The linearization process is straightforward, but it is not feasible to achieve the 

complete LPV model as 3.38 in practice due to an infinite number of operating points 

(p) during the operating range. However, the complete form of the LPV model is not 

necessary at all in the LPV synthesis. Section 2.7 discussed details in solving the infinite 

dimension LMIs involved in the synthesis. A gridding process is employed to solve the 

a p p r o x i m a t e d  p r o b l e m ,  w h i c h  o n l y  n e e d s  t h e  i n f o r m a t i o n  o f  s t a t e  s p a c e  m a t r i c e s  A p ,  

Bp, Cp, and Dp on the grid points. For example, if there are two gridding points pi and 
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p2 , the linearization is only needed to be done on these two points. The resulting AP l ,  

BPl, CPl, DPl, AP2, BP2, Cp2, and DP2 supply enough information for the LPV controller 

synthesis. 

The linearized system models, including the generators, exciters, governors and the 

networks, have the following state space representation: 

y = C(p)X + D(p)u (3.38) 

where X is a vector of the state variables, u is the control input, d is the disturbance, 

and y is the output variable. For PSS design case, they are defined as follows: 

X1  = 

u = 

d 

y 

[Generator states,  Exciter states,  etc.  

[AVpss :  PSS voltage output] 

[AV r e f  : Exciter voltage reference] 

[Aw : the relative rotor speed] 

where A, B, C and D are coefficient matrices which depend on the operating condition 

p. At each gridding point, the state matrices A and B can be derived through the 

formula 3.35, Where 

ËL 
8% 

E 1 

•f
ef 

d/l, 0 0 0 0 0 E 1 

•f
ef 

0 0 0 d E f o j  0 0 

^d(\—m) 0 aAi 0 0 0 0 0 ^d(\—m) 0 9#* 0 0 0 0 0 

9hi 
94, 9ivj 0 0 0 0 

$(21—nl) 0 0 aw. 0 0 0 0 

0 0 9h, 0 df-oi 9/5. 0 0 duij 0 d E F D j  d X E 2 ]  

0 0 0 0 0 dhi 0 0 0 0 0 0 d X g i j  0 

XE2(l-m) 0 0 dhi 0 0 dhi 9/7, XE2(l-m) 0 0 dtOj 0 0 d X E i j  d X E 2 ]  

(3.39) 
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Of 
ay 

È' g(l-m) 

d(l-m) 

$(21-nl) 

^FD(l-m) 

X £72(1—m) 

o 

% 

II 
a/, 

o 

o 

0 

0 

dju 
a/* 

o 

% 
a/* 

o 

o 

0 

0 

0 

0 

0 

0 

0 

a/6, 

dVrj 

0 

(3.40) 

ac 
ay 

I q ( l - m )  

I d ( l — m )  

Vr(l-m) 

dlq  

a/, 

o 

9] 
0 

a/j, 

a/* 
dvT i  a VT , 

âTJ âTâ a% 

o 

o 

a VTI 

" T j  

(3.41) 

Og_ 

ax 

I q ( l — m )  

a/„ a/„ 

% 
d i  a/* a/, 

» •& 

a/„ 

a^rl 
a/j, 

a^i 

o 

o o o 

0 0 0 

0 0 0 

(3.42) 

df 
du 

E  q ( l - m )  

F,' 
d ( l  — m )  

Û ( l - n )  

~ $(21—ni) 

E F D ( l — m )  

Xg2(l_m) ^ 

The details of 3.39-3.43 can be found in Appendix A. 

O V R E F  

(3.43) 
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In this research, the rotor speed is chosen as the control input for PSS. Then C, and 

D can be written in the following form. 

C = [0...0,1,0.-0] (3.44) 

D = 0 (3.45) 

This LPV model enables us to apply the promising LPV theories to power systems. 

The information of varying parameters is used in controller design and scheduling to 

stabilize the large range of plants and provide higher performance. 
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CHAPTER 4. CONTROLLER DESIGN APPLICATION 

LPV synthesis approach will first be applied to the four-machine, two-area sample 

system. The objective is to design a power system stabilizer (PSS) to stabilize the 

whole system when it operates at different points. The PSS is supposed to be installed 

at generator 2. 

4.1 Discussion on Classical PSS Design 

As we mentioned before, PSS is used to provide positive damping for power system 

oscillations. The conventional PSS design is to produce a component of electrical torque 

in phase with the rotor speed deviations. Much study has been done in this area(53). 

The following diagram illustrates the relationship between the applied torques on the 

turbine-generator shaft and the resulting generator rotor speed and the rotor angular 

displacement. The transfer function GEP(S) includes the dynamics of the generator, 

excitation system, and the power system. 

An ideal stabilizer characteristic would therefore be inversely proportional to GEP(S), 

i.e. : 

f (s) (4.1) 

In practice, the PSS uses its lead/lag stages to compensate for phase lags in GEP(s) over 

the frequency range of interest. It is normally of second or third order. Also a washout 

stage is included to prevent steady-state voltage offsets as system frequency changes. 
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AT, 

Ms 

GEP(s) PSS(s) 

All other 
contributions 

Figure 4.1 PSS with speed input-system block diagram 

Filters are normally required for limiting noise and minimizing torsional interaction. 

E R N M P S S M = < « >  

The conventional design procedure for multi-machine systems is detailed in (52; 53). 

First, the complete state space model for the system is built. Then the state space model 

of the modified system is obtained by eliminating the columns and rows which correspond 

to the angles and speeds of the generators. The ideal phase lead curve is derived from 

the modified model. Conventional design uses lead/lag blocks to approximate the ideal 

compensating phase curve over a frequency range from 0.1 Hz to 2Hz. The curve comes 

from a single generator infinite bus equivalent, where all generator speeds and angles 

remain constant. Normally a 2nd or 3rd order lead/lag block will be good enough to 

match the ideal phase curve. 

For the 4-machine test system, a conventional PSS installed at generator 2 was de

signed based on the above rule to improve the stability and damp the oscillations. The 

tie line real power flow of 0MW is chosen as the nominal point. The 3rd order conven

tional PSSs are employed here. The comparison between the phase lead of conventionally 

designed PSSs and ideal phase lead are shown in Fig. 4.2. The ideal phase curves at dif
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ferent operating points considering the dynamics of other generators instead of assuming 

them as constants are shown in Fig. 4.3 and Fig. 4.4. 

conventional PSS 

100 

60 

40 

20 

0 
frequency (Hz) 

Figure 4.2 Comparison of PSS phase lead with the ideal phase compensa
tion for generator at Bus $2 for 0MW tie line real power 

From the above comparison, the following observations are made: 

1. A lower order PSS is not enough to approximate the ideal phase compensation 

curve which considers the dynamics of other generators in the system. 

2. A conventional PSS is designed at a nominal operating point, which could lead to 

non-optimal phase compensation at other operating points in the operating range. 

The ideal phase compensation curve changes with the operating points, the fixed 

PSS can't guarantee the robustness for a large operating range. 

3. The ideal phase curve (GEP(s)) is based on the assumption that the dynamics of 

other generators in the system do not influence the PSS behavior by setting the 

speed and angle states constant. The simplification may introduce some errors in 
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-300MW 

I 

i 
i ï 
I 

frequency (Hz) 

Figure 4.3 Ideal phase compensation curves for tie line real power at 
-300MYV, -200MW, -100MW and OMW. 

200MW 

I 
1 

! 
i 
i 

0.2 

frequency (Hz) 

Figure 4.4 Ideal phase compensation curves for tie line real power at 
100MW, 200MW, 300MW and 400MW. 
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the ideal phase lead curve, which can lead to deteriorating performance at some 

frequency points. 

4. A complex tuning process is essential to be taken in selecting the gain for conven

tionally designed PSS to balance the damping between local modes and inter-area 

modes. It involves of on-line and off-line tuning procedures. 

For the multi-PSS case that will be discussed in the next chapter, the situation 

is even more complicated. The phase compensation for one stabilizer is independent 

of the others since the speed and angle states are held constant for the ideal phase 

determination. Different PSSs may have conflicting influence on some modes. Further 

tuning is needed to coordinate them to reach a compromise (54; 16). In summary, the 

conventional PSS design for large power systems is very complicated and time consuming. 

Manual tuning is a necessary step to guarantee the coordination among PSSs. 

4.2 SQLF LPV Design 

4.2.1 Closed-loop Norm Comparison with Optimal Design 

For the 4-machine system, the tie line real power flow is chosen as the scheduling 

variable, which is supposed to vary in the range of [—200,200]MW. The Loadl varies in 

the range of [1340,\7A0]MW while Load2 varies in the range of [1200,1600]MW. Five 

gridding points chosen are —200MW, —100MW, OMW , 100MW and 200MW. The 

weighting function are : Wper/ — 10/(s + 5), Wu — 0.01 ,Wnoise — 0.001, respectively. 

Using the method based on the single quadratic Lyapunov function described in section 

2.2.3, the resulting LPV controller at five gridding points is of 28th order. 

At each of the five gridding points, one optimal controller is designed for the 

c o r r e s p o n d i n g  L T 1  p l a n t .  A l s o  t h e  o p t i m a l  P S S  d e s i g n e d  f o r  t h e  n o m i n a l  p l a n t  ( P  —  

OMW) controller is applied for all 5 points. The closed-loop norms in these three 
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cases are compared in Table 4.1. The closed-loop norms with the LPV controller 

at the frozen points range from 0.024 to 0.028, which are larger than those achieved 

by the HC0 optimal design. This is natural since the LPV controller is a suboptimal 

problem and designed with respect to all the possible parameter trajectories in the 

parameter variation set. When the optimal controller designed at nominal plant 

P — 0MW is applied for all the plants, we can observe that the closed loop system loses 

stability at P — —200MW, while the LPV controller maintains the system stability and 

performance in the whole range. 

P (MW)  #oc I tfoo  I I  LPV 

-200  0 .014  uns tab le  0 .028  

-100  0 .012  0 .014  0 .026  

000  0 .012  0 .012  0 .026  

100  0 .012  0 .016  0 .025  

200  0 .012  0 .019  0 .024  

Table 4.1 Comparison of closed-loop norm at the gridding points 

4.2.2 Damping Ratio from MASS 

At different operating points, within the whole operating range, the eigenvalues are 

computed using MASS. In Table 4.2, the eigenvalues corresponding to the inter-area 

mode and local modes and their damping ratios are compared among the cases without 

PSS, with conventional PSS, with optimal PSS and with LPV PSS. The conventional 

PSS is tuned using the procedure described in (52; 53) at the operating point, where the 

tie line real power is OMW. The matches between the phase lead of the designed PSS 

and ideal phase lead are shown in Fig. 4.2. Without PSS, the five plants are all stable 

but have poorly damped inter-area modes. With optimal PSS, the plant works well 

at its designed operating point, but when the operating point changes, the PSS even 

destabilizes the system. It also can be observed from the table that LPV PSS effectively 
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damped both inter-area mode and local modes by a larger damping ratio over the whole 

range than conventionally designed PSS. 

4.2.3 Nonlinear Time Domain Simulation Results 

Nonlinear time domain simulation is performed using ETMSP(42). First, a 0.1 pu 

reference terminal voltage change is applied to generator 2, the output frequency of 

generator 2 is monitored. Then a three-phase short circuit fault is applied at bus 6 for 

100ms; the tie line real and reactive power flow are monitored. In the simulation results, 

the comparisons are made among cases with LPV PSS, with optimal PSS and LPV 

PSS. 

f(Hz) 

59.95 

• • •  w i t h  H  i n f i n i t y  c o n t r o l l e r  
— with LPV controller 
• - with conventional PSS 

10 12 14 16 18 20 (S) 

Figure 4.5 O.lpu change of reference terminal voltage at generator 2 (at 
2 0 0 M W ) .  

From the above comparison, we can see that LPV PSS has a larger operational range 

and improves system robustness and performance. It damps the oscillations for the whole 

operational range very well, even better than the optimal PSS controller. What's 

more, the LPV synthesis technique allows us to design a gain-scheduled controller in one 
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Table 4.2 Comparison of damping ratios for different cases at the gridding 
points 

Operating Conditions Inter-area Local Operating Conditions 
Mode DR Mode DR 

Ptie = 200MW 

No PSS -0.07815 ± 2.933i 0.0266 
— 1.039 ± 7.927* 0.1299 

Ptie = 200MW 

No PSS -0.07815 ± 2.933i 0.0266 -1.117 ± 7.865» 0.1406 

Ptie = 200MW Conv. -0.1452 ±2.994» 0.0484 
-1.118 ±7.866i 0.1407 

Ptie = 200MW Conv. -0.1452 ±2.994» 0.0484 -1.596 ± 7.838* 0.1996 Ptie = 200MW 

LPV -0.3901 ± 3.097% 0.1250 
-1.118 ± 7.866* 0.1407 

Ptie = 200MW 

LPV -0.3901 ± 3.097% 0.1250 —1.118 ± 7.866* 0.3918 

Ptie = 200MW 

Hoc -0.1473 ± 2.428* 0.0606 
-1.118 ± 7.866» 0.1407 

Ptie = 200MW 

Hoc -0.1473 ± 2.428* 0.0606 -1.427 ±6.735» 0.2072 

Ptie = 100 MW 

No PSS -0.08519 ± 3.052i 0.0279 
-1.030 ± 7.936» 0.1287 

Ptie = 100 MW 

No PSS -0.08519 ± 3.052i 0.0279 -1.087 ±7.870* 0.1368 

Ptie = 100 MW Conv. -0.2059 ± 3.075; 0.0668 
-1.090 ± 7.870* 0.1371 

Ptie = 100 MW Conv. -0.2059 ± 3.075; 0.0668 -1.605 ± 7.784» 0.2005 Ptie = 100 MW 

LPV -0.6397 ± 2.960* 0.2113 
-1.089 ± 7.871» 0.1371 

Ptie = 100 MW 

LPV -0.6397 ± 2.960* 0.2113 -3.536 ± 8.193^ 0.3963 

Ptie = 100 MW 

Hc« -0.1659 ± 2.403; 0.0689 
-1.089 ±7.871» 0.1371 

Ptie = 100 MW 

Hc« -0.1659 ± 2.403; 0.0689 -1.416 ± 6.776» 0.2045 

Ptie = 0 MW 

No PSS -0.0904 ± 3.904* 0.0292 
-1.033 ± 7.942» 0.1290 

Ptie = 0 MW 

No PSS -0.0904 ± 3.904* 0.0292 -1.072 ±7.871» 0.1349 

Ptie = 0 MW Conv. -0.2708 ± 3.087* 0.0840 
-1.075 ± 7.872» 0.1353 

Ptie = 0 MW Conv. -0.2708 ± 3.087* 0.0840 -1.617 ± 7.840» 0.2020 Ptie = 0 MW 

LPV -0.7811 ± 2.433* 0.3046 
-1.075 ±7.871* 0.1353 

Ptie = 0 MW 

LPV -0.7811 ± 2.433* 0.3046 -1.585 ± 6.827* 0.2262 

Ptie = 0 MW 

Hoo -0.2570 ± 2.459* 0.1040 
-1.075 ± 7.872» 0.1353 

Ptie = 0 MW 

Hoo -0.2570 ± 2.459* 0.1040 -0.2570 ± 2.459* 0.2038 

PUe = -100Ml-y 

No PSS -0.09386 ± 3.068* 0.0306 
-1.047 ± 7.943» 0.1307 

PUe = -100Ml-y 

No PSS -0.09386 ± 3.068* 0.0306 -1.070 ±7.943* 0.1348 

PUe = -100Ml-y Conv. -0.3471 ± 3.027* 0.1139 
-1.073 ± 7.876* 0.1352 

PUe = -100Ml-y Conv. -0.3471 ± 3.027* 0.1139 -1.632 ± 7.835* 0.2039 PUe = -100Ml-y 

LPV -0.5167 ± 2.063* 0.5299 
-1.073 ±7.867* 0.1351 

PUe = -100Ml-y 

LPV -0.5167 ± 2.063* 0.5299 -3.284 ±8.117* 0.3751 

PUe = -100Ml-y 

Hoo —0.184 ± 2.4901* 0.0737 
-1.073 ± 7.867* 0.1351 

PUe = -100Ml-y 

Hoo —0.184 ± 2.4901* 0.0737 -1.423 ±6.795» 0.2049 

#,, = -200MMK 

No PSS -0.0936 ± 2.949* 0.0317 
-1.073 ±7.941» 0.1340 

#,, = -200MMK 

No PSS -0.0936 ± 2.949* 0.0317 -1.086 ±7.855^ 0.1370 

#,, = -200MMK Conv. -0.4533 ± 2.844* 0.1574 
-1.087 ± 7.856» 0.1371 

#,, = -200MMK Conv. -0.4533 ± 2.844* 0.1574 -1.649 ± 7.828* 0.2062 #,, = -200MMK 

LPV -0.2795 ± 1.905* 0.1452 
-1.087 ±7.856* 0.1371 

#,, = -200MMK 

LPV -0.2795 ± 1.905* 0.1452 -2.887 ± 8.064* 0.3371 

#,, = -200MMK 

Hoo 0.009263 ± 1.784* 0.3729 
- -

#,, = -200MMK 

Hoo 0.009263 ± 1.784* 0.3729 - -
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60 

f(Hz) 

95 

with H infinity controller 
with LPV controller 59.9 

.85 

59.8 

.75 

59.7 

59.65 

59.6 0 

Figure 4.6 O.lpu change of reference terminal voltage at generator 2 
1 0 0  M W ) .  

f(Hz) 

59.75 

59.65 

Figure 4.7 O.lpu change of reference terminal voltage at generator 2 
OMty). 
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f(Hz) 

- • with H infinity controller 
— with LPV controller 

59.85 

Figure 4.8 O.lpu change of reference terminal voltage at generator 2 (at 
-100MW). 

((Hz) 

• • • with H infinity controller 
— with LPV controller 

20 (S) 

Figure 4.9 O.lpu change of reference terminal voltage at generator 2 (at 
-200M W ) .  
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with H infinity controller 

P(MW) 

2 6 8 10 12 14 16 18 20 

Figure 4.10 Tie line real power comparison among the LPV PSS, optimal 
Hoo PSS and the conventional PSS (at Pite = 200MW). 

with H infinity controller 

— with conventional PSS 

P(MW) 

300 

200 

Figure 4.11 Tie line real power comparison among the LPV PSS, optimal 
/Zoo PSS and the conventional PSS (at Ptie — 100MW). 
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with H infinity controller 

P(MW) 

2 12 14 16 18 

Figure 4.12 Tie line real power comparison among the LPV PSS, optimal 
H Q O  P S S  a n d  t h e  c o n v e n t i o n a l  P S S  ( a t  P f t e  =  O M W ) .  

• with H infinity controller 

P(MW) 

0 2 6 16 18 

Figure 4.13 Tie line real power comparison among the LPV PSS, optimal 
Hoo PSS and the conventional PSS (at Phe = —100MW). 
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with H infinity controller 100 
P(MW) 

0 2 8 10 12 14 16 18 

Figure 4.14 Tie line real power comparison among the LPV PSS, optimal 
Hoo PSS and the conventional PSS (at Ptae = —200MW). 

wilh H infinity controller Q(MVAR) 

Figure 4.15 Tie 
mal 

line reactive power comparison among the LPV PSS, opti-
Hoo PSS and the conventional PSS (at Ptie — 200AZW). 
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— with H infinity controller 
—- with LPV controller Q(MVAR) 

0 2 4 6 8 10 12 16 18 20 (S) 

Figure 4.16 Tie line reactive power comparison among the LPV PSS, opti
m a l  H O O  P S S  a n d  t h e  c o n v e n t i o n a l  P S S  ( a t  P t i e  —  1 0 0 M W ) .  

with H infinity controller 
Q(MVAR) 

200 

Figure 4.17 Tie 

mal 
line reactive power comparison among the LPV PSS, opti-
Hoo PSS and the conventional PSS (at Pt,;e = OMW). 
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• • wilh H infinity controller 
— with LPV controller 
— with conventional PSS 

Q(MVAR) 

350 

200 

0 2 4 6 8 10 12 14 16 18 

Figure 4.18 Tie line reactive power comparison among the LPV PSS, opti
mal Hoo PSS and the conventional PSS (at Pue = — 100MW). 

with H infinity controller 

Q(MVAR) 

Figure 4.19 Tie line reactive power comparison among the LPV PSS, opti
mal Hoo PSS and the conventional PSS (at Pùe = —200M W ) .  
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step,that is, to design the local LTI controllers and the scheduling strategy simultane

ously. The LPV controller not only provides guarantees regarding the global behavior 

and sustaining performance, but also maintains stability and performance specifications 

for both slow varying parameters and rapidly changing parameters. 

4.2.4 Realization of LPV PSS 

It is shown in Fig.4.21-4.25 that each entry of the state space matrices of the LPV 

controller could be well approximated by the first order polynomial in Ptie at each of the 

gridding points through the least-squares estimation. The controller space matrices can 

be written as: 

The dynamics of the LPV controller can be expressed in the diagram as Fig. 4.20. 

Dur i n g  t h e  b i g  d i s t u r b a n c e ,  P t ! e  m i g h t  b e  o u t  o f  t h e  d e s i g n  r a n g e  [ — 2 0 0 A f  V K ,  2 0 0 M  W ] .  

(4.3) 

X 

A 4 
Q  D O  

u 
O-

A 5i 
— / > /  

Figure 4.20 Diagram of the LPV dynamics. 
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If Pue is less than —200MW,  Ak (Pu e )  — A^(—200). If P<te is greater than 200MW, 

Ak{Ptie) = Afc(200). The same rule applies to Bk, Ck, and Dk-

Frequency (radians/sec) 

Comparison between the LPV PSS and Its Approximated Realiza tion at -200MW tie line 

— Approximated realization 

I -160 

Z -180 

10"' 
Frequency (radians/sec) 

Figure 4.21 Comparison between the LPV PSS and its approximated re
a l i z a t i o n  ( a t  — 2 0 0 M W ) .  

4.3 Results For PDQF LPV Design 

The single quadratic Lyapunov function based method gives good results. But 

its limit comes from the big conservatism considering arbitrary variation of parame

ter change. For the example above, we can't extend the range ([-200,200]) any more 

for the same weighting setup. In the real case, the load change rate always has some 

bounds. Motivated by the available bound information, a new synthesis formulation 

described in section 4.3 based on parameter dependent quadratic Lyapunov func

tion can be employed to reduce conservatism and extend the operating range. The 

range [-300,400] is investigated here. We assume the tie line real power changes at 

a rate between [—50MW/sec, 50MW/sec\. The same weighting functions are chosen: 

Wperf = 10/(s + 5), Wu = 0.01, Wnoise — 0.001. The basis functions /,•,</; are chosen as 
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S* io2 

Frequency (radians/sec) 

Comparison between the LPV PSS and ts Approximated ReaHza tion at -1OOMW tie line 

— - Approximated realization 

| -160 

5 -200 

10~1 

Frequency (radians/sec) 

Figure 4.22 Comparison between the LPV PSS and its approximated re
alization^ — 100MW). 

10 

10' 
10" 102 

Frequency (radians/sec) 

Comparison between the LPV PSS and Is Approximated Realize tion at OMW tie line 

Approximated realization 

| -160 

3 -160 

10" 
Frequency (radians/sec) 

Figure 4.23 Comparison between the LPV PSS and its approximated re
alization^ O M W ) .  
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10 

10' 

101 
10" 

Frequency (radians/sec) 

Comparison between the LPV PSS and ts Approximated Realiza tion at 10OMW tie line 

— Approximated realization 

| -160 

Frequency (radians/sec) 

Figure 4.24 Comparison between the LPV PSS and its approximated re
alization^ 100M1V). 

ff 10! 

10"1 

Frequency (radians/sec) 

Comparison between the LPV PSS and ts Approximated Realiza tion at 200MW tie line 

Approximated realization 

S -180 

Frequency (radians/sec) 

Figure 4.25 Comparison between the LPV PSS and its approximated re
alization^ 200M W ) .  
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follows (let i  —  2): 

f i (Ptie)  = 9i(Piie)  = 1, which are constant. 

h{Ptie)  -  92(Ptie)  = Ptie,  which are linear. 

The resulting rate bounded LPV controller at the eight gridding points is of 28th 

order and the achieved closed loop induced L2 norm from [AVÇe/ noise]T to \Wperj 

WU]T is 0.9000. Similarly, the optimal H00 controller's corresponding LT1 plants are 

designed. The closed loop Hoo norms at each gridding point are compared in Table 

4.3. We can see the optimal PSS can not stabilize the system at operating points 

Ptie — —200and — 300MW, while the rate bounded LPV controller works well for main

taining system stability and performance. 

P(MW)  tfoo I Hoo II LPV(bounded  ra tes )  

-300  0 .056  uns tab le  0 .110  

-200  0 .014  uns tab le  0 .038  

-100  0 .012  0 .014  0 .025  

000  0 .012  0 .012  0 .020  

100  0 .012  0 .016  0 .017  

200  0 .012  0 .019  0 .017  

300  0 .012  0 .021  0 .018  

400  0 .013  0 .024  0 .028  

Table 4.3 Comparison of closed-loop norm at the gridding points 

4.3.1 Inter-area Mode and Damping Ratio from MASS 

Small signal stability is evaluated through mode analysis. MASS is employed to com

pute the eigenvalues at different operating points within the whole operating range. The 

eigenvalue corresponding to the inter-area mode and its damping ratios are compared 

with the case with conventional PSS designed based on the nominal point where the tie 

line real power is OMW in Table 4.4. It can seen from the table that the rate bounded 
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LPV PSS effectively damped the inter-area mode by a larger damping ratio over the 

whole range than conventionally designed PSS. 

P(MW)  on  

t i e  l i ne  

w i th  LPV PSS w i th  Conv .  PSS P(MW)  on  

t i e  l i ne  In te r -a rea  mode(Hz)  DR In te r -a rea  mode(Hz)  DR 

400  0 .5001  0 .1695  0 .3904  0 .0102  

300  0 .4870  0 .1501  0 .4577  0 .0297  

200  0 .4606  0 .1794  0 .4765  0 .0484  

0  0 .3788  0 .1505  0 .4913  0 .0840  

-200  0 .3018  0 .1174  0 .4526  0 .1574  

-300  0 .2550  0 .2929  0 .3401  0 .2145  

Table 4.4 Inter-area mode and damping ratio 

4.3.2 Realization of LPV PSS 

A piece-wise quadratic approximation can provide satisfactory precision. For the 

piece-wise approximation we find two quadratic curves intersecting at an intermediate 

point Ptie — OMW. It is shown in Fig.4.26-4.33 that the LPV controller could be well 

approximated. The controller space matrices can be written as: 

When -300 < P t i e  < -100, 

Ak(Ptie)  — Aw  + P t i eAn  + Pfi e  A12 

Bk(Ptie)  = B1 0  + PtieBu + Pfi cB 12 
(4.4) 

Dk(Ptie)  = Dio + PtieDn + Ptie P) 12 

When —100 < Ptie < 400 

Ak(Ptie)  = A2  0 + PtieAil  + Pt i eA22 

Bk{Ptie)  = B20 + Ptie B 21 + Pti eB22 
(4.5) 

Ck(Ptie)  = C20 + PtieC21 + Pu eC22 
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During the big disturbance, Fiîe might be out of the design range [—300MW, 400M W7]. 

I f  P T I E  i s  l e s s  t h a n  — 3 0 0 M W ,  A K ( P T I E )  =  A & ( — 3 0 0 ) .  I f  P t i e  i s  g r e a t e r  t h a n  4 0 0 M W ,  

Ak(Ptie) — Afc(400). The same rule applies to Bk, Ck, and D^-

! s 
10° 

10" 
Frequency (radians/sec) 

S -200 

— Approximated realization 

10~1 

Frequency (radians/sec) 

Figure 4.26 Comparison between the LPV PSS and its approximated re
alization (at —300MW). 

4.4 Time Domain Simulation Results 

Nonlinear time domain simulations are performed for different operating conditions 

to test the efficacy of the rate bounded LPV PSS. A three phase fault is applied to 

Bus #6 for 0.1s and the tie line real power is monitored, as shown in Fig.4.34-4.37. The 

performance of the rate bounded LPV PSS is compared with that of the conventional 

PSS designed at the nominal operating point where the tie line exporting power is 0M W. 

It is observed that the rate bounded LPV PSS provides good damping in the operating 

range while the damping characteristic of the conventional PSS deteriorates when the 

system becomes more stressed. 
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g1 102 

10"' 10° 10' 
Frequency (radians/sec) 

S -180 

È -200 

— Approximated realization 

Frequency (radians/sec) 

Figure 4.27 Comparison between the LPV PSS and its approximated re
a l i z a t i o n  ( a t  — 2 0 0 M  W ) .  

10= 

10" 10 10' 
Frequency (radians/sec) 

•120 

•180 

LPV 
— Approximated realization 

-220 

-240 L 

10" 10 

Figure 4.28 Comparison between the LPV PSS and its approximated re
alization^ — lOOAiW). 
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s 

101 

10 
Frequency (radians/sec) 

I -160 

S -160 

-220 Approximated realization 

Frequency (radians/sec) 

Figure 4.29 Comparison between the LPV PSS and its approximated re
a l i z a t i o n ^  O M W ) .  

10" 

Frequency (radians/sec) 

5. -180 

— Approximated realization V 

Frequency (radians/sec) 

Figure 4.30 Comparison between the LPV PSS and its approximated re
alization^ lOOMM-7). 
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s s 
I 
E  

10° 10' 10 
Frequency (radians/sec) 

5. -180 

Approximated realization 

Frequency (radians/sec) 

Figure 4.31 Comparison between the LPV PSS and its approximated re
a l i z a t i o n ^  2 0 0 M W ) .  

104 

1 

102l , , " L- « I 
10~1 10° 101 102 

Frequency (radians/sec) 

S -180 

S -200 

Approximated realization 

Frequency (radians/sec) 

Figure 4.32 Comparison between the LPV PSS and its approximated re
alization^ 300AiW). 
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10e 10' 
Frequency (radians/sec) 

S* -160 

£ -220 

-240 

Frequency (radians/sec) 

Figure 4.33 Comparison between the LPV PSS and its approximated re
alization^ 400MW). 

— wilh rate bounded LPV PSS 
P(MW 

Figure 4.34 Comparison between the rate bounded LPV PSS and conven
tional PSS (at 300M W ) .  
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with rate bounded LPV PSS 

P(MW) 

300-

0 2 4 6 8 10 12 14 16 18 

Figure 4.35 Comparison between the rate bounded LPV PSS and conven
tional PSS (at 200MW). 

P(MW) 

Figure 4.36 Comparison between the rate bounded LPV PSS and conven
tional PSS (at 0M W ) .  
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P(MW) 

0 

-200 

•500 

0 2 4 6 8 20 

ure 4.37 Comparison between the rate bounded LPV PSS and conven
t i o n a l  P S S  ( a t  - M M W ) .  
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CHAPTER 5. DECENTRALIZED PSS DESIGN WITH 

LPV METHOD 

5.1 Introduction 

For large power systems, a single local controller is no longer sufficient to stabilize 

the whole system and to obtain a satisfactory damping property. Centralized design is 

neither economical nor reliable due to the inherent constraints of large power systems 

such as geographic dispersion, topology variance, and nonlinearities. Decentralized de

sign becomes a natural consideration^^ 49). A coordinated action from the various 

controllers in the system is also needed. The control design method must minimize or 

prevent deleterious interactions among controllers, ensure that the dynamic and steady 

state performance criteria for the system are satisfied, and provide a simple procedure 

for tuning the controllers. 

In recent years, considerable efforts have been placed on the coordinated synthesis 

of PSSs in large power systems. To achieve both a coordinated action and a better ro

bustness with PSSs, an empirical procedure called tuning (which aims to maximize the 

phase margin in the frequency of interest) is employed. Naturally, due to its empirical 

nature, the efficiency of this procedure is limited and depends strongly on the designers' 

experience and knowledge of the system. The robust control approaches were motivated 

by the prospect of overcoming the cited drawbacks of tuning. However, typically high 

dimensions of power system models constitute another factor that discourages the ap

plication of computationally intensive design techniques and leads to very high order 
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controllers. 

In this work, the LPV technique is applied to the decentralized controller design 

for PSS. Instead of considering the interconnected system model, we just consider each 

individual machine and represent its interconnection with the rest of the system by 

arbitrarily fast changing real and reactive power output in some range. All possible 

dynamics at the interface between the generator and the rest of the system are supposed 

to be represented by this approach. As a result, the system is decoupled naturally and 

the order of the plant is decreased dramatically. In addition robustness is considered 

through the time changing controller whose parameters are dependent on the scheduling 

variables, which represent the changes in the system operating conditions. The resulting 

controllers give satisfactory performance over a wide range of operating conditions. 

5.2 Decentralized Design Steps 

The SQLF LPV method can guarantee the stability and performance not only for 

slow changing parameters but also for arbitrarily fast changing parameters. That is to 

say, it automatically takes care of the dynamics of the changing parameters. In any 

power system network, each generator is connected with the rest of the system through 

its terminal bus. In addition the real and reactive power output of each generator char

acterizes the generator's interaction with the rest of the system through the transmission 

network. The real and reactive power variations also capture changes in network topol

ogy, network solution, and generator variables like voltage and rotor angles. Given these 

unique characteristics, the output real and reactive power of each generator where the 

local PSS will be installed are chosen as scheduling variables. As a result of this choice, 

each generator can then be decoupled from the rest of the system. The single generator 

subsystem includes only one generator and the influence of the rest of the system will be 

taken care of by the scheduling variables, its output real and reactive power. All possible 
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dynamics at the interface between the generator and the rest of the system are supposed 

to be represented by the scheduling variables. It can be seen that this decoupling leads 

to a decentralized design for the localized controller and results in lower order PSSs. 

The grid points are obtained based on the scheduling variables, which vary on a fixed 

range. The design procedure for the decentralized PSSs include the following steps: 

1. For each grid point obtain the power flow solution for the interconnected system 

and determine the matrices A(p), B(p),C(p), and D[p). This solution also deter

mines the generator bus voltage and the real and reactive power output of each 

generator, this then determines the interaction with the rest of the system; 

2. Choose the generator where a PSS should be installed. Optimum potential location 

is chosen using existing techniques such as combined damping torque technique and 

High order residues (51); 

3. Using the real and reactive power output of the chosen generator from step 1 

as scheduling variables form the decoupled single generator subsystem using the 

scheduling variables as a representative of the system interface; 

4. Using the LPV synthesis procedure described in Section 2.4, synthesize the LPV 

controller; 

5. Repeat the above steps to design another PSS for the next generator until the 

system performance is satisfied. 

It is to be noted that when the PSSs at other generators are designed only the initial 

output of the machine is used. The effect of the PSS at the other generators is not 

represented. The reason we can do this is that the adding PSS to a generator won't 

change the range of real and reactive power output of other generators. Hence the design 

is indeed decentralized. The framework for the multi-machine decentralized PSS design 

is given in Fig. 5.1 
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5.3 PSS Design for a Four-Machine System 

The proposed LPV decentralized design procedure is first applied to the 4-machine 

system. Again, the exporting power from Areal is chosen as the changing parameter, 

which is allowed to vary in the range of [0,400MW]. 5 grid points are chosen and they 

are evenly spaced. Four PSSs installed at each generator in the system are designed 

independently following the above procedure. The same weighting functions 

0.05s + 400 
W p e r f  — 

S + 40 

WN = 0.01 

are chosen for each PSS design, the resulting PSSs are of 1th order. 

5.3.1 Small Signal Analysis 

At each grid point, the small signal stability analysis is done using MASS. The 

eigenvalue corresponding to the least damped inter-area mode and its damping ratio 

are given in the Table 5.1. It can be seen from the table that the decentralized PSSs 

damped the inter-area mode well over the whole operating range. 

Table 5.1 Least damped inter-area mode and its damping ratio 

fs_6(MW) Least damped inter-area mode DR 

0 -0.6320 ± 0.7342; 0.6523 
100 -0.4169 ± 2.7770; 0.1485 
200 -0.4271 ± 2.9140; 0.1450 
300 -0.4063 ± 3.0690; 0.1312 
400 -0.3568 ± 0.3980; 0.6675 
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5.3.2 Time Domain Simulation 

Time domain simulations are run for different operating conditions. A three phase 

fault is applied at Bus j|5 for a period of 100ms. The simulation results are shown in 

Fig.5.2-5.6. In all five figures, decentralized LPV PSSs are able to hold the system stable 

and have good damping performance. 

P(MW) 

Three phase fault at Bus 5 for 0.1s 

Figure 5.2 Time response of tie line real power (0M W )  in the case of a 
100ms three phase fault at Bus 5. 

5.4 PSS Design for a Fifty-Machine System 

The LPV decentralized design is then applied to the 50-generator IEEE test system 

(50). the performance of the decentralized LPV PSSs and conventionally designed PSSs 

are compared. The studies includes small signal stability study, time domain simulations 

and transient stability study. 
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R(MW) 

300 

Three phase fault at Bus 5 for 0.1s 

Figure 5.3 Time response of tie line real power (100MM7) in the case of a 
100ms three phase fault at Bus 5. 

P(MW) 

Three phase fault at Bus 5 for 0.1s 

Figure 5.4 Time response of tie line real power (200M W )  in the case of a 
100ms three phase fault at Bus 5. 
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P(MW) 

Three phase fault at 

300 

Figure 5.5 Time response of tie line real power (300MW) in the case of a 
100ms three phase fault at Bus 5. 

P(MW) 

Three phase fault at Bus 5 for 0.1s 

Figure 5.6 Time response of tie line real power (400M W )  in the case of a 
100ms three phase fault at Bus 5. 
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5.4.1 Gridding Process 

The operating point is characterized by setting the real power generation at Buses 

#93 and #110. This generation varies in the range [2 x 1150 — 2 x 1750]MW. Seven 

gridding points are chosen for each generator. They correspond to 2 X 1150MW, 2 X 

1250Mty, 2 x 1350MIV, 2 x 1450MPK, 2 x 1550MW, 2 x 1650MW and 2 x 1750MK" 

of generation at Buses #93 and #110. For each gridding point, the power flow for the 

interconnected system is solved and the real and reactive power output of each generator 

can be determined as shown in Table5.2. 

P(MW) at Bus#93 

and Bus#110 

93 104 110 111 P(MW) at Bus#93 

and Bus#110 P(MW) Q(MVAR) P(MW) Q(MVAR) P(MW) Q(MVAE) P(MW) Q(MVAR) 

2 X1150 1150 469.67 2000 500 1150 612.04 2000 663.99 

2 xl250 1250 500.79 2000 500 1250 642.41 2000 692.11 
2 X1350 1350 537.37 2000 500 1350 677.69 2000 726.84 

2 xl450 1450 579.28 2000 500 1450 717.81 2000 767.14 

2 X1550 1550 627.33 2000 500 1550 763.49 2000 814.79 

2 X1650 1650 708.22 2000 500 1650 766.00 2000 878.87 

2 X1750 1650 766.00 2000 500 1750 766.00 2000 971.58 

Table 5.2 Real and reactive power output of generators where PSSs are 
installed at gridding points 

First, the scheduling variables for each PSS include real and reactive power output 

of the generator where the PSS is located. In the case where the real power is fixed by 

dispatcher's order such as generator #111, the reactive power still varies. It will give the 

operating information of the system to the PSS to correspondingly adjust. 

When both real and reactive powers of a generator are fixed such as generator #104, 

the corresponding single PSS won't schedule itself. It doesn't mean decentralized PSSs 

can't deal with the situation. Since the new control strategy involves multiple PSSs 

distributed at different locations, the coordination among them gives the control for the 

whole system. In this case, other PSSs will take care of the system changed dynamics 
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and the control coordination. 

5.4.2 Design Details 

Four independently designed PSSs following the procedures described in Section ?? 

are located on generators at Bus #93, #104, #110 and #111 respectively. Single Quadratic 

Lyapunov Function based LPV approach is adopted and the same design setup as in 

Section 2.5 is applied. The same weighting functions 

0.05s + 400 
W'"> = , + 40 

W u  —  0.01 

are chosen for each PSS design. Since the design is based on the decoupled single machine 

system, the resulting PSSs are all 7th orders, which is much lower in comparison with 

other robust design methods where the whole system model has to be considered. 

For the purpose of comparison, four conventional PSSs at the same locations as the 

LPV PSSs, are designed at the nominal operating point where the generation at Bus #93 

and #110 is 2x 1350MW. The conventional design procedure is detailed in (52; 53). First, 

the complete state space model for the system is built. Then the state space model of 

the modified system is obtained by eliminating the columns and rows which correspond 

to the angles and speeds of the generators. The ideal phase lead curve is derived from 

the modified model. Conventional design uses lead/lag blocks to approximate the ideal 

compensating phase curve over a frequency range from 0.1 Hz to 2Hz. The curve comes 

from a single generator infinite bus equivalent, where all generator speeds and angles 

remain constant. Normally a 3rd order lead/lag block will be good enough to match the 

ideal phase curve. The 3rd order conventional PSSs are employed here. The comparison 
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between the phase lead of conventionally designed PSSs and ideal phase lead are shown 

in Fig. 5.7-5.10. The transfer functions of the PSSs are given as G c ( s )  =  | .  
Dc\ s )  

For the PSSs installed at generators #93 and #110, 

#c(a) = 12.3^ + 162.3^ + 1504 

D c ( s )  =  0.004s3 + 0.4004s2 + 10.04s + 1 

For the PSSs installed at generators #104 and #111, 

YVcW - 8.88^+ 131.1^ +150a 

D c ( s )  = 0.004s3 + 0.4004s2 + 10.04s + 1 

120 

100 

I - - ideal curve 
— conventional PSS 

I 
1 
Q_ 

0.5 

frequency(Hz) 

Figure 5.7 Comparison of PSS phase lead with the ideal phase compensa
tion for generator at Bus #93 

The LPV synthesis yields a higher order controller than the conventional design. 

Since a Hx design is involved in the LPV synthesis, it gives a controller of the same 

order as the open-loop plant. The LPV technique decouples the single generator from 

the whole system, so the open-loop plant just includes the generator and the weighting 
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Figure 5.8 Comparison of PSS phase lead with the ideal phase compensa
tion for generator at Bus #104 

I 
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frequency (Hz) 

Figure 5.9 Comparison of PSS phase lead with the ideal phase compensa
tion for generator at Bus #110 
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Figure 5.10 Comparison of PSS phase lead with the ideal phase compen
sation for generator at Bus #111 

functions. In our case, the two-axis generator model and the first order weighting com

pose the 1th order open-loop plant. Then a 1th order LPV controller is introduced. To 

further illustrate the adaptive characteristic of LPV controllers, the transfer functions at 

TV (5 ) 
different operating points of the LPV PSS at generator #111 are given as G k ( s )  =  ,  •  

D ( s )  

At the operating point characterized by P  —  1150MW and Q  =  4 1 0 M V  A R  at Bus 

#93 and P = 1150MW and Q = 410MV AR at Bus #110 respectively 

= 6.188e4^ + 1.132e7^ + 6.192e8^ + 

1.087el0^ + 2.385el0^ + 2.053el0g + 6.494e9 

D(a) = / +248.4^+ 2.279e4^ + 9.764e5^ + 

1.965e7^ + 1.545e8s2 + 2.337e8s + 9.79e7 

At the operating point characterized by P  —  1350MW and Q  =  537M V A R  at Bus 
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#93 and P  —  1350M W  and Q  = 678MVA R  at Bus #110 respectively 

#(a) = 6.188e4/ + 1.132e7^ + 6.204e8/ + 

1.094el0s3 + 2.49el0s2 + 2.2el0s + 7.024e9 

D(a) = +247.1^+ 2.254e4g^ +9.622e5g" + 

1.951e7^ + 1.59e8a^ + 2.421e8a + 1.017e8 

At the operating point characterized by P  =  1750M W  and Q  =  7 6 6 M V A R  at Bus 

#93 and P = 1750MM7 and Q = 766MVAR at Bus #110 respectively 

W(a) = 6.188e4/ + 1.133e7^ + 6.222e8^ + 

1.103el0s3 + 2.649el0s2 + 2.421el0s + 7.82e9 

D(a) - / +245.2^+ 2.216e4^ + 9.41e5s^ + 

1.929e7g^ + 1.656e8a^ + 2.545e8a + 1.073e8 

Further discussion is needed regarding the design of a conventional PSS. First, a 

conventional PSS is designed at a nominal operating point, which could also lead to non-

optimal phase compensation at other operating points in the operating range. Another 

important point is that the ideal phase curve is based on the assumption that the 

dynamics of other generators in the system do not influence the PSS behavior by setting 

the speed and angle states constant. This simplification may introduce some errors in the 

ideal phase lead curve, which can lead to deteriorating performance at some frequency 

points. Also, a complex tuning process is essential to be taken in selecting the gain 

for conventionally designed PSS to balance the damping between inter-area modes and 

inter-area modes. It involves a lot of on-line and off-line tuning procedures. 

For the multi-PSS case, the phase compensation for one stabilizer is independent 

of the others since the speed and angle states are held constant for the ideal phase 
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determination. Different PSSs may have conflict influence on some modes. Further 

tuning is needed to coordinate them to reach a compromise (54; 17). In summary, the 

conventional PSS design for large power systems is very complicated and time consuming. 

Manual tuning is a necessary step to guarantee the coordination among PSSs. The ideal 

phase curve considering the dynamics of other generators instead of assuming them as 

constants is shown in Fig. 5.11. It is obvious that a low order lead/lag block can't match 

the curve anymore. For example, at the system critical frequencies, 0.27Hz and 1 Hz 

which can be observed in the simulation results, see Fig. 5.14- 5.19, conventional PSS 

can not give good compensation any more since in the simplified model, these important 

phase changes are ignored. 

The LPV PSS takes care of the dynamics of the other generators through the schedul

ing variables, which interface with the rest of the system, so the decentralized LPV PSSs 

coordinate with each other automatically through their adaptive parameters, which are 

dependent on the scheduling variables. Similarly, the LPV PSSs give uniform per

formance during the whole operating range by changing parameters according to the 

operating conditions. The design is relatively straightforward. It does not need the 

complicated tuning process. Designers can define closed-loop performance by adjusting 

the system setup and weighting functions. 

The LPV PSS phase lead at the operating point characterized by generation at Bus 

93&110 at 2 x 1350MW is compared with the ideal phase lead without ignoring any 

dynamics in Fig. 5.12 and the conventionally PSS phase lead. The LPV PSS gives much 

better compensation than conventional PSS at the system critical frequencies while 

relaxes the compensation at uncritical frequencies. Moreover, the LPV design is more 

straightforward. It does not need to the complicated tuning process. Designers can 

define closed-loop performance by adjusting the system setup and weighting functions. 
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0.2 0.4 0.8 1.2 1.4 

Figure 5.11 Ideal phase compensation for generator 111 without ignoring 
the dynamics of other generators (at 1350MM/). 
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(degree) 

— ideal phase with all dynamics 
conventional PSS 

- - LPV PSS 

20 

0.2 0.4 0.6 0.8 1.2 

Figure 5.12 Comparison between LPV PSS phase lead and ideal phase 
lead for generator 111 without ignoring the dynamics of other 
generators (at 1350AiW). 
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5.4.3 Small Signal Analysis 

At different operating conditions within the whole operating range, the eigenvalues 

of the linearized system are computed. The critical modes and their damping ratios are 

given in Table 5.3. It can be seen from the table that both conventional PSSs and LPV 

PSSs can improve system damping while the LPV PSSs can provide a higher damping 

ratio than the conventional PSSs. 

Table 5.3 Comparison of damping ratio 

P(MW) at 
Bus 93&110 

w/o PSS with Conv. PSS with LPV PSS P(MW) at 
Bus 93&110 f(Hz) DR f(Hz) DR f(Hz) DR 

2 x 1150 
1.6454 0.0266 1.4843 0.3754 1.1272 0.9975 

2 x 1150 1.0556 0.0370 0.9950 0.0593 1.5385 0.2597 2 x 1150 
0.3021 0.0268 0.3075 0.1347 0.1252 0.3848 

2 x 1350 
1.6420 0.0269 1.4839 0.3729 1.8597 0.9752 

2 x 1350 1.0006 0.0314 0.9923 0.0584 1.5835 0.2877 2 x 1350 
0.2919 0.0060 0.2939 0.1532 0.1289 0.3590 

2 x 1750 
1.6283 0.0278 1.4814 0.3631 1.7695 0.9773 

2 x 1750 1.0690 0.0224 0.9549 0.0646 1.6444 0.3141 2 x 1750 
0.2533 -0.1083 0.2346 0.0882 0.1397 0.2714 

5.4.4 Transient Stability 

The effect of LPV PSSs in enhancing transient stability performance is verified by 

evaluating the critical clearing time (CCT) at three different operating points for a three-

phase fault at Bus #1, Bus #7 and Bus ((33 respectively. The results given in Table 5.4 

further illustrate the advantages of LPV PSSs in comparison with the conventional PSSs. 

With the power production of 2 x 1750MW at Buses #93 and #110, a 3-phase fault is 

applied at Bus #7 for 100ms. The relative rotor angles of the generator at Bus #95 are 

given for the cases when generators are equipped with conventional PSSs and LPV PSSs. 

Results are given in Fig. 5.13. Apparently, for this fault LPV PSSs provide stability for 

the system while conventional PSSs can not. 
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Table 5.4 Comparison of critical clearing time 

Power Generation at Fault CCT(ms) CCT(ms) 
Generators 93 & 110 Location with Conv. PSS with LPV PSS 

Bus 1 119 130 
Bus 7 94 113 

2 x 1750Mty Bus 33 134 148 
Bus 7 63 88 

trip line 6-7 
Bus 1 213 218 
Bus 7 137 151 

2 x 1350MM/ Bus 33 245 251 
Bus 7 97 116 

trip line 6-7 
Bus 1 265 269 
Bus 7 150 162 

2 x 1150MW Bus 33 309 314 
Bus 7 105 121 

trip line 6-7 

500 
(degree) 

450 
— with conventional PSSs 

with LPV PSSs 

400 

350 

300 

250 

200 

150 

100 

50 

0.5 1.5 2.5 (S) 

Figure 5.13 Relative rotor angles of the generator at Bus #95. 
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A three-phase fault with fixed clearing time of 0.15s is applied to verify the perfor

mance of the LPV PSSs under transient conditions. The results are shown in Table 5.5 

. With LPV PSSs, the system transient stability is enhanced in terms of the maximal 

power generation at both both Bus #93 and Bus #110 to keep the system stable after the 

fault. 

Table 5.5 Comparison of critical power generation 

Fault 
Location 

Maximal 
Transfer P(MW) 
with Conv. PSS 

Maximal 
Transfer P(MW) 
with LPV PSS 

Bus 1 2 x 1620 2 x 1661 
Bus 7 2 x 1150 2 x 1366 

Bus 33 2 x 1696 2 x 1742 

5.4.5 Time Domain Simulation 

Nonlinear simulation studies are performed using ETMSP (42). A three-phase short 

circuit is applied at Bus #33 and cleared after 100ms. The real and reactive power 

of generators at Bus #104 are monitored. First, the generation at Bus #93 and Bus 

#110 is set at 1150MW each. At this operating point, the system is dominated by the 

plant modes (50). Comparisons are made between the conventionally designed PSSs 

and the LPV PSSs in Fig. 5.14-5.15. LPV PSSs and conventionally designed PSSs 

demonstrate similar performance in this case. In Fig. 5.17-5.16, the performance of the 

designed controllers is also compared with that of the conventional controllers when 

the generation at Bus #93 and Bus #110 is set at 1750MW each, where the inter-area 

modes dominate the system (50). LPV PSSs show better damping than conventionally 

designed PSSs. 

Fig. 5.18 and 5.19 show results of comparison between LPV PSSs and conventional 

PSSs for a more severe fault, which leads to inter-area oscillations. The real power output 

of both generator #93 and generator #110 are set at 1750MW and a three phase fault 
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applied to Bus j)7 for 60ms, then the fault is cleared by opening the line between Bus 

$6 and Bus j)7. It can be seen from the figures that the LPV PSSs demonstrates much 

better robustness and performance than the conventional PSSs. Comparison between 

outputs of LPV PSS and conventionally designed PSS at different locations are given 

in Fig 5.22- 5.25. It can be observed that LPV PSSs exert more control effort than 

conventionally designed PSSs for the first few seconds after the disturbance. 

Four optimal Ha0 PSSs are also synthesized with the same setup as LPV PSSs at 

the same locations. Even for each single machine system, the stability is guaranteed. 

The closed-loop system is not even stable at the designed point. This also demonstrates 

in another way that LPV methods take care of the coordination automatically among 

different decoupled sub-systems by considering interface variables as scheduling variable. 

2250 

P(MW) 
— - with conventional PSSs 

with LPV PSSs 

2150 

2100 

2000 

2050 

1950 

1800 
10 12 14 16 18 20 (S) 

Figure 5.14 Real power output of generator at Bus (J104 with 0.1s fault at 
Bus |33(at 1150MW). 
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Q(MVAR) 

1200 

200 20 (S) 

Figure 5.15 Reactive power output of generator at Bus ((104 with 0.1s fault 
at Bus j(33(at 1150MW). 

Q(MVAR) 

Figure 5.16 Reactive power output of generator at Bus ((104 with 0.1s fault 
at Bus ((33 (at llhQMW). 
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2300 -

P(MW) 

2200 -

— with conventional PSSs 
with LPV PSSs 

1800 

(S) 

Figure 5.17 Real power output of generator at Bus #104 with 0.1s fault at 
B u s  # 3 3  ( a t  1 7 5 0 M W ) .  

P(MW) 

Figure 5.18 Real power of the generator at Bus #110: 3-phase fault at Bus 
#7 and clear the fault by opening the line between Bus #6 and 
Bus #7 (at 1750MW). 
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Q(MVAR) 

1400 

— with conventional PSSs 
with LPV PSSs 

10 12 14 16 18 20 (S) 

Figure 5.19 Reactive power of the generator at Bus $110: 3-phase fault at 
Bus j}7 and clear the fault by opening the line between Bus j)6 
and Bus |J7 (at 1750MW). 

- - with conventional PSSs 
— with LPV PSSs 

10 12 14 16 18 20 

Figure 5.20 Real power of the generator at Bus {J 104: 3-phase fault at Bus 
j)7 and clear the fault by opening the line between Bus |6 and 
Bus JJ7 (at 1750MW). 
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800 
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Figure 5.21 Reactive power of the generator at Bus J} 104: 3-phase fault at 
Bus j)7 and clear the fault by opening the line between Bus jj6 
and Bus |7 (at 1750MW). 
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Figure 5.22 Comparison of the PSS output at generator f)93: 3-phase fault 
at Bus #7 and clear the fault by opening the line between Bus 
jj6 and Bus jj7 (at 1750MW). 
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Figure 5.23 Comparison of the PSS output at generator fl04: 3-phase fault 
at Bus Jj7 and clear the fault by opening the line between Bus 
jJ6 and Bus jj7 (at 1750MVF). 
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- LPV PSS 
Conventional PSS 

Time (s) 

Figure 5.24 Comparison of the PSS output at generator #110: 3-phase fault 
at Bus #7 and clear the fault by opening the line between Bus 
ft6 and Bus #7 (at 1750MW). 



www.manaraa.com

91 

0.2 -
LPV PSS 
Conventional PSS 

I 
Î 

-0.1 -

-0.2 -

0 5 10 15 20 

Time (s) 

Figure 5.25 Comparison of the PSS output at generator jjlll: 3-phase fault 
at Bus ft 7 and clear the fault by opening the line between Bus 
jj6 and Bus ft 7 (at 175QMW).  

5.5 Theoretical Proof for Stability 

The heuristic method works well in both 4-machine and 50-machine systems and the 

results are very promising. In the following a theoretical proof is developed to show that 

the decentralized LPV design guarantees the stability of the interconnected system. 

Without losing generality, assume the system operating condition is characterized by 

setting the real power of some tie line (Pue) and Ptl-e varies in the range [Pue, Ptie]• For 

the it h generator in the system, the state space description is as the following: 

T 'd0iKi  =  E p D i  ~ Ki  + (X d i  -  x 'd i )hi  (5.1) 

TqOiÊdi  — — (x q i  ~ X q i ) I q i  (5.2) 

Miûi  — Pm i  — ( IdiE d i  + I q%E q i )  + (x q i  — x d i ) l q i ldi  — Di(u>i — u>s)  (5.3) 

6i = Ui — ujs (5.4) 
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where 

hi  ~  T>G +*(W ?  -  FB-G{$ij)E d j \  + ^2 FG + B (5ik)E k  (5.5) 
i=l k=m +1 

m 

hi  = y~][FB -G (Si j )E' d  + Fg + 5 (^)^-]  + FB -a{Sik)E k  (5.6) 
j=l fc=m + l 

where 

= 5,- — Sj (5.7) 

The power flow solution is determined by Pt,e. So 

Sj  = Sj  (Pt i e )  (5.8) 

E 'd j  = E' d j (P t i e )  (5.10) 

for j  ^ z and j — 1,..., n.  

Then 5.5 and 5.6 can be written as: 

Iqi  = lqi(Si ,  E ' q i ,  E ' d i ,  P i i e )  (5.11) 

hi  = hi(ài ,  E q i i  E d i ,  P t i e )  (5.12) 

Substitute 5.11 and 5.12 into 5.1-5.3, we have: 

T~dOiEqi  — EpDi E q i  + (x d i  X d i ) I d i (Si ,  Pt ie)  (5.13) 

TqOiÈdi  = —E d i  — (x q i  — X q i ) I q i (ë i ,  Pt i e )  (5.14) 

Miûli  = Pm i  — (Idi(Si ,  Pt ie)E d i  + Iqi(&i,  Pt ie)E q i )  + (5.15) 

( •Eq i  l :  d i  ) '  Pt ie)  ̂ d i (^ i ,  Pt ie)  Di  (^ i  ^  S  )  

Si — Ui — Us (5.16) 

It can be seem from 5.13-5.16 that the generator is decoupled from the other gener

ators in the system as shown in Fig. 5.26. 
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Figure 5.26 Decoupled single machine frame. 

The system is linearized to form the LPV model as follows: 

y  =  C ( P tie)X + D(Ptie)u 

where 

X1 = 

y 

[controller output] 

[controller input] 

(5.17) 

Then apply the SQLF based LPV synthesis to this single machine system. The 

resulting closed-loop system can be written as 

% = (5.18) 
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where 

X? = [AE;,,AEj,,Aw,,A<%,X^] 

where X^i represents the states of the controller installed at ith generator. 

It is quadratically stable over [Ptie, Ptie] (by Theorem 2.2.1). 

Lemma 5.5.1 Given a compact set P, and a quadratically stable LP V system 

x ( t )  =  A ( p ( t ) ) x ( t )  (5.19) 

where p E Fp. There exist constant scalar 71,72 > 0 such that the state transition matrix 

<&p(t, t0), which characterizes all solutions to equation 5.19, satisfies 

(5.20) 

for all p G Fp 

The proof of Lemma 5.5.1 is shown in (55). 

By lemma 5.5.1, the closed-loop system 5.18 is asymptotically stable in the range 

[Ptie, Ptie]-

As a state of the closed-loop system 5.18, A Si —> 0, as t —» 00. 

This applies for i = 1,..., n. 

Then, AS i j  —» 0, as t  — >  00 for — 1,..., n .  

So the whole system is stable. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this dissertation, the application of linear parameter varying synthesis to power 

system controller design is investigated. The study is motivated by the inevitable limi

tation of a LTI controller on the nonlinear power systems in a large operating range and 

successful implementation of this approach in safety critical systems like aircrafts and 

process control. The main goal is to apply the LPV techniques to the Power System 

Stabilizer synthesis. A summary of some significant contribution is as follows: 

1. Development of the LPV model of power systems. The LPV model is the basis 

for the LPV controller synthesis process. The model uses real time information 

of measurable varying parameters in power systems to improve system robustness 

and performance. 

2. A systematic procedure to design PSS using LPV synthesis is presented. The 

feedback setup is constructed and a general guidelines for proper weighting func

tion selecting is given. The LPV design technique also allows us to design a 

gain-scheduled controller in one step. That includes the design of the local LTI 

controllers and the design of the scheduling scheme simultaneously. 

3. Apply Single Quadratic Lyapunov Function based LPV synthesis. The resulting 

PSS can guarantee the stability and performance over a large range of plants with 

arbitrarily fast changing parameters. The performance of the PSS is tested in 
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both the frequency domain and the time domain. Comparisons are made to the 

conventionally designed PSS and the optimal PSS. LPV PSS is more effective. 

4. Applying the Parameter Dependant Lyapunov Function based LPV synthesis. The 

bounds on the rate of variation of the parameters are used in LPV controller 

design to reduce the conservativeness and expand the operating range of the system 

further. Simulation is done to check the performance of the implemented closed-

loop system. The resulting LPV PSS damps the inter-area oscillations for a wide 

range of operating conditions and is superior to the conventional PSS. 

5. Solving infinite dimension LMI through a gridding process. Theoretically, infinite 

grid points are needed to capture the entire dynamics following any type of distur

bance. But this is intractable in practice. An approximate problem is set up by 

gridding the parameter space and solving the set of LMIs that hold on the subset 

of P formed by gridding points. A rule for gridding is proposed. 

6. Realization of LPV controllers. The gridding process leads to a discrete controller. 

The controller state matrices are only known at a discrete set of p values. During 

closed-loop operation, the continuous controller is approximated by polynomial or 

rational functions through curve fitting. 

7. Casting the LPV control theories into a framework applicable to large power sys

tems in a decentralized controller frame. The design framework and procedure are 

given. By taking generator real and reactive power as scheduling variables, the 

generator is decoupled from the rest of the system. The design for a given PSS is 

independent of the design of the others and all the PSSs cooperate with each other 

automatically. The decoupling also leads to a relatively low order PSS design. The 

numerical examples further illustrate that LPV approach is useful for designing 

decentralized controllers in power systems. The nonlinear simulations show that 
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these independently designed decentralized PSSs cooperate well in a wide operat

ing range and have better damping characteristics than conventionally designed 

PSSs. The disturbances tested have been selected to be different in nature and 

are at different locations. The performance of the LPV PSSs is superior to the 

conventionally designed PSSs. 

8. A theoretical proof for stability is given for the decentralized controller design. 

The adaptive nature of LPV controllers overcomes the limitation on LTI controllers 

and it guarantees robust performance for a wide operating range. The primary results 

from this research clearly demonstrate the great potential of LPV synthesis application 

in power systems. 

6.2 Future Work 

In the future work, the following issues should be addressed: 

1. Investigate the design of a robust LPV controller, which would consider not only 

the changing parameters that can be measured on line, but also the varying param

eters that can't be measured in real time. Instead of setting them to the nominal 

values, they can be represented as uncertainties. So the LPV synthesis problem 

can be converted into problem with more inputs and outputs. The process 

could be shown as the Fig.6.1. Then the same LPV synthesis procedure can be ap

plied to design the robust LPV controller, which not only can deal with measurable 

changing parameters, but also achieve robust stability and robust performance for 

uncertainties. 

2. In this dissertation, all the discussed LPV controllers have the same performance 

requirement for all operating points. This is not necessary for all the cases. LPV 
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Figure 6.1 Robust LPV PSS setup. 

synthesis offers an ability to emphasize different performance objectives depending 

on different operating conditions. By adjusting weighting functions according to 

different operating conditions, more flexibility can be achieved. This could be used 

to further reduce conservatism. 

3. For large power systems, the special characteristic of sparsity can be used to re

duce the computation burden in solving LMIs involved in LPV synthesis. Also 

mature model reduction techniques of large systems can be applied to power sys

tem. Further efforts can be made to make the LPV synthesis more applicable to 

large power systems. 

4. Control design for other devices (i.e. FACTS devices such as SVC, TCSC, UPFC 

etc.) in power systems to damp the inter-area oscillations and improve system 

stability. 
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APPENDIX A. DETAILS OF SYSTEM LINEARIZATION 

The details of 3.39-3.43 are given here. 

In 3.39 

for function /i, : 

a/i, 

% 

<9/, it 
d E p D j  

for fun c t i o n  f 2 ,  :  

a/2, 

for function /3j : 

d f :  3 i 

0 for j ^ i 

— 7 -  f o r  j = i  j  =  ! , - • •  ,  m  
TdOi 

0 for j ^ i 

-7- for j=i j  =  ! , • • •  , m  
rdOi 

0 for j 7£ i 

-7- for j=i j = 1, • • • ,m 
TqOi 

0 for j ^ i 

lqiO 

"Ml 
for j=i j = 1, , m 

0 « 

hio 

Mi 

0 

Pi 

Miu>s 

for j—i and j = 1, • • • , m 

for j / i 

for j=i j  =  ! , • • •  , n  

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 
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for function f4i : 

df< 4 i 
dojj 

for function f5i : 

aw, 

Of 5  i  

FDj  

d f i  5  i  

ax El j  

df 5i  

0XE2J 

for function /6. : 

a/e, 

ax El j  

— 1 for j=l 

1 for j=i, j ^ 1 j  =  1, • • •  , n  

otherwise 

(A.7) 

0 

0 otherwise 

A  A i  A  s i  . . .  
aia2ia3i — tor j=i and j — 1, • • • , m 

±Ai  Wg 

where a,- = Ta/Tsi a2i — Tn/T2i <%3i = Tzi/Ta 

0 for j ^ i 

-J" forj=i j = !,••• ,m 
J-Ai  

0 for j ^ i 

(A.8) 

T m 

for j=i j  =  ! , • • •  , m  

0 for j ^ i 

KAi 

TM  
for j=i j  =  1 , '  

for j yé i 

(A.9) 

(A.10) 

(A.ll) 

-777- for j=i j  —  1 ,  • • •  , m  
J-Ri 

(A.12) 
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for function f7i : 

% 

dujj 

d f n  

O X E I J  

a/?, 

9XE 2  j  

0 otherwise 
1 - a,- KSi . . .  ( A .  1 3 )  

02,03,—; tor i=j j = 1, • • • , m 
1  Bi  Wg 

0 for j ^ z 
1 - a,- . . (A-14) 

— for j=i J = !,••• ,m 
J-  B i  

0 for j 7£ i 
1 (A.15) 

for j=i j = 1,-- • , m 
1  Bi  

In 3.40, 

where 
d f t  5  i  

OVrtEFj 

d f n  

dV REFj  

K Ai  

lTAj 

0 

for j f ; J = 1,' 

for j =i 

, m 

for j ^ i j = 1, • • • , m 

1 
~ a i )~rT,  for j—i 

J-Bj  

(A.16) 

(A.17) 
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In 3.41, 

for function /i, : 

d f u  

a/* 

for function f2, : 

a/2, 

dl v 

for function /3t : 

a/3 
diq3 

% 
dhi 

for function /6j : 

a/6. 

dVrj 

0 for j ^ i j = 1, • • • , m 

— (Xdi  -  x' d i )  for j=i 
(A.18) 

'dOi 

for j j  =  ! , • • •  ,m 

—{Xqi — xqi) for j—i 
(A.19) 

'qOi 

r i 

= 

-^[ -E 'qio + (x 'qi - x'dùhio] for j=i andj = TO + 1, • • • , n 

0 

1 

-Mi 

0 

E; 

otherwise 

otherwise 

(A.20) 

for j—i andj — 1, - - , m 

1 , , , 
j^~[~E d i 0  + (x q i  — x d i ) Iq i 0 ]  for j=i andj — 1, - - , m 

0 for j ^ z j — 1, • • • , TO 

777- for j=i 
J-Ri 

(A.22) 
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In 3.42 

dh 

Oh 

din 

Oldn 

d V 'T I  

àÂT 

= < 

— < 

0 for j =£ i j = 1, • • • , n 

1 for j=i 

0 for j ^ i j = 1, • • • , n 

1 for j =i 

0 for j ± i j = ,m 

1 
--^—{-Vdiox

qi ~ rVgio) for j=i 

Ti, 

Ti  

d j  

dVri 

0VTj 

0 for j ^  i  j  =  ! , • • •  ,m 

-(Vqiox'di - fVdio) for j=i 
I VxiO 

0 for j ^ i j — 1, • • • , m 

1 for j=i 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 
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In 3.43 

a) f . 
= FG+B{Sijo) (A.28) 

= --^b-G(%O) (A.29) 

or m or 
QS^ = 71 g^-[^g+g(^jo)^o + ^B-g(^jo)^jo] (A.30) 

+ Ê (A.31) 
k=m+l 

dldi 

dl di 

j = 1, • • • , m A: = m + 1,-• • ,n r = 2, • • • , n 

= ^b-G(^Ù'O) (A.32) 

= Fg+B (^ijo) (A.33) 

- TI Qj^-[^B-G(^io)^;o - ̂G+B(^io)£l
?j0] (A.34) 

dldi _ <95tj 

cMrl d5rl i= i  

+ Ê (A.35) 
k=m+1 

j = V • 

dV'T, f 0  
MfiO 

, Vno 

dVn 0 

V</?o 

, Vtm 

d8r i 

, m  k  =  m  +  1 ,  •  •  •  , n  r = 2, • • • , n 

for j / i j = 1,- • • ,n 

for j=i 

for j ^ i j = 1, - • • ,n 

for j=i 

(A.36) 

(A.37) 
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APPENDIX B. LPV CONTROLLER REPRESENTATION 

IN TSAT 

There is no standard block in the TSAT (56) control block library which can represent 

a time variant controller. Neither does other power system simulation software such as 

ETMSP, EURO STAG and PSS/E. Users have to define the model by themselves. In 

TSAT, dynamically linked controller blocks (ULB) provide a method of implementing 

control functions or control logic not available in the standard control block. A ULB is 

basically created by the user (by writing C code) and linked to TSAT at run-time by 

means of Dynamic-Link Library (DLL) with an Application Program Interface (API). 

In our research, DLB is employed to define LPV controllers in simulations. 

In order to illustrate the use of DLB in TSAT, the LPV PSS installed at generator 

#93 is taken as an example. The state space matrices of the LPV controller could be 

well approximated by the first order polynomial in P93 at each of the gridding points 

through the least-squares estimation. The controller space matrices can be written as: 

AkiPgs) = A0 + P93A1 

Bk{Pm) — Bo + P$zB\ (B 1) 

C k i P g z )  = Co + P93C1 

P k ( P o z )  —  P o  + P93O1 

The dynamics of the LPV controller can be expressed in the diagram as Fig. B.l. 

One thing needs to be clarified is that only P is used here as a scheduling variable instead 

both P and Q. It is because for the case we studied given a value for P, Q is determined 
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Pmin 

Figure B.l Block diagram of the LPV PSS at generator 93. 

since the system operating condition is characterized by setting the generation at Bus 

JJ93 and #110 to be some value. For a general case, both P and Q should be employed 

as scheduling variables. 

The DLB code to implement this LPV PSS is shown below. 

#include <windows.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include "udmface.h" 

extern void stdca.ll DLB_MSGSUB(char *msg,unsigned int lmsg) ; 

const float aO [] = 

{-1.4406,-0.000j -0.3775,-72.6289, -0.0000,-13.2213, 0.0000, 

0.0000,-0.8065, 0.0000, 0.0000, 0.0000, 0.0000, -0.0000, 

74.6533, 0.0000,-42.4269,302.6198, -0.0000, 99.8703, -0.0002, 

8.1360,-0.0000, 0.0876,-61.0104, -0.0000, -1.9761, 0.0000, 

0.0000, 0.0000, -0.0000, -0.0000,-100.0000, -0.0000, -0.0000, 
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-0.0173,-0.0000, 0.0096, -0.0660, 0.0000, -1.0226, 0.0000, 

94.9946, 0.0000,-53.6934, 50.9139, -0.0000, 70.3282, -40.0005}; 

const float al [] = 

{ '  0.9151 , 0 .0000, -0 .6032, 0 .0901, 0 .0000, 0 .6137, -0 .0000, 

-0 O
 
o
 

o
 
o
 

0, 0 .0000, -0 .0000, 0 .0000, -0 .0000, 0 .0000, 

-1 .2109, 0 .0000, 0, .6211, -0, .1189, -0 .0000, -0. .8274, 0. .0000, 

0 .0201, -0 .0000, -0, .0103, 0. .0020, 0. .0000, 0, .0137, -0. .0000, 

-0 .0000, 0, .0000, 0. .0000, -0. .0000, 0, -0. .0000, 0. .0000, 

0 .0014, -0 .0000, -0, .0007, 0. .0001, 0. .0000, 0. .0009, -0. .0000, 

-0 .4033, 0. .0000, 0. .2069, -0. .0396, -0. .0000, -0. .2756, 0. 0000} 

const float b0[] = 

{207.0754, 0.0000, -117.6094, 19.8096,-0.0000,137.6040, -21.263}; 

const float c0[] = 

{-86.9280, 0.0000, 354.2928, -13.1823, 0.0000,-6.4207 , 50.0423}; 

const float dO[]={0,0,0}; 

const float Pmin=ll.50,Pmax=17.50,Qmin=0,Qmax=10; 

void stdcall DLB_READ(struct udminfo *pinfo, char *buf, 

unsigned int lbuf, int *ninput, int *nstate, int *iret) 

{ 

*nstate=7; 

*ninput=3; 

*iret = 0; 

} 

void stdcall DLB_INIT(struct udminfo *pinfo, struct udminputinfo 
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*pinput, int *idir, float *valin, float *valout, float *x, int 

*iret) { 

int i ; x[0]=0; x[l]=0; x[2]=0; x [3] =0 ; x [4] =0 ; x[5]=0; x[6]=0; 

for(i=0;i<3;i++) { 

if (pinput [i].itype==3) { 

valin[i]=0.0f ; 

} 

} 

if(strncmp(pinput[0].name,"PT",2)) { 

char* errorString = "***ERR0R-IN READ PT"; 

DLB_MSGSUB(errorString, strlen(errorString)); 

*iret = 1; 

return; 

} 

if(strncmp(pinput[1].name,"QT",2) ) { 

char* errorString = "***ERR0R-IN READ QT"; 

DLB_MSGSUB(errorString, strlen(errorString)); 

*iret = 1; 

return; 

> 

if(strncmp(pinput[2].name,"DW",2)) { 

char* errorString = "***ERR0R-IN READ DW"; 

DLB_MSGSUB(errorString, strlen(errorString)); 

*iret = 1; 

return; 
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*valout = O; 

*iret = 0; 

> 

void stdcall DLB_RESTART(struct udminfo *pinfo, int *iret) { 

*iret = 0; 

} 

void stdcall DLB_DERIV(struct udminfo *pinfo, float *valin, 

float *valout, float *x, float *xdot, int *iret) 

{ 

float anew[49], bnew[21], cnew[7], dnew [3]; 

float y=0; 

int i,j; 

if(valin [0]<Pmin) 

{ 

int i ; 

for ( i=0; i<49;i++) 

anew[i]=a0[i]-al[i]; 

for (i=0; i<7;i++) 

{bnew[i]=b0[i] ; 

bnew[i+7]=0; 

bnew[i+14]=0; 

cnew[i]=c0[i] ; 

} 

dnew[0]=dnew [1]=dnew [2]=0 ; 

> 
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else if (valin[0]>Pmax) 

{ 

int i ; 

for (i=0; i<49;i++) 

anew[i]=aO [i]+al [i]; 

for (i=0 ; i<7;i++) 

{bnew[i]=bO[i] ; 

bnew[i+7]=0; 

bnew[i+14]=0; 

cnew[i]=cO [i] ; 

> 

dnew[0]=dnew [1]=dnew[2]=0 ; 

> 

else 

{ 

int i ; 

for (i=0; i<49;i++) 

anew[i]=a0 [i] + (valin[0]-14.5)/3*al 

for (i=0; i<7;i++) 

{bnew[i]=b0 [i]; 

bnew[i+7]=0; 

bnew[i+14]=0; 

cnew[i]=c0 [i] ; 

> 

dnew[0]=dnew [1]=dnew[2]=0 ; 
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for (i=0;i<7;i++) { 

xdot[i]=-b0[i]*valin[2]; 

for (j =0;j<7;j++) { 

xdot[i]=xdot[i]+anew[i+j*7]*x [ j]; 

> 

> 

for( i=0;i<7;i++) 

{ 

y=y+c0[i]*x[i] ; 

> 

*valout=y; 

*iret = 0; 

> 

void stdcall DLB_NWLIMIT(struct udminfo *pinfo, float *x, int 

*iret) { 

*iret = 0; 

> 

void stdcall DLB_JACOB(struct udminfo *pinfo, float *valin, 

float *x, 

float *a, float *b, float *c, float *d, int *iret) 

{ 

if(valin[0]<Pmin) 

{ 
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int i ; 

for ( i=0; i<49;i++) 

a[i]=aO[i]-al[i] 

for (i=0; i<7;i++) 

{b [i] =b0 [i] ; 

b[i+7]=0; 

b[i+14]=0; 

c[i]=cO[i] ; 

} 

d[0] =d[l]=d[2]=0; 

> 

else if (valin[0]>Pmax) 

{ 

int i ; 

for (i=0; i<49;i++) 

a[i]=a0[i]+al[i] 

for (i=0; i<7;i++) 

•Cb[i]=b0[i] ; 

b[i+7]=0 ; 

b[i+14]=0; 

c[i]=c0[i] ; 

> 

d [0] =d [1] =d [2] =0 ; 

} 

else 

{ 

int i ; 
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for (i=0; i<49;i++) 

a[i]=a0[i]+(valin[0]-14.5)/3*al[i]; 

for (i=0; i<7;i++) 

{b[i] =b0[i] ; 

b [i+7]=0 ; 

b[i+14]=0; 

c[i]=c0[i] ; 

> 

d[0]=d[l]=d[2]=0; 

*iret = 0; 

> 

void __stdcall DLB_CL0SE(struct udminfo *pinfo, int *iret) { 

*iret = 0; 

> 

The following is the sample data showing the use of this DLB. In this user-defined model, 

block jflis a DLB which requires a DLB DLL named dlbpss93.dll, which is from the above 

code. 

/ UD PSS START 

0 . 0  0 . 0  2  

0 / REMOTE BUS 

0 / REMOTE BRANCH 

1, 'STAB DLB', 'DLB', 'dlb_pss93' /CONTROL BLOCK 1 
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2, 'STAB LIM', 'GN', 1.0, 0.2, -0.2 / CONTROL BLOCK 2 

1, 2 /BLOCK INTERCONNECTION 

1, 'PT', 1.0, 1 'QT', 1.0, 1, 'DW', 1.0 / BLOCK INPUT 

2 /BLOCK OUPUT 

/ UD PSS ENDS 
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